Geometric aspects of composite pulses

Unitary operations acting on a quantum system must be robust against systematic errors in control parameters for reliable quantum computing. Composite pulse technique in nuclear magnetic resonance realizes such a robust operation by employing a sequence of possibly poor-quality pulses. In this study, we demonstrate that two kinds of composite pulses—one compensates for a pulse length error in a one-qubit system and the other compensates for a J-coupling error in a two-qubit system—have a vanishing dynamical phase and thereby can be seen as geometric quantum gates, which implement unitary gates by the holonomy associated with dynamics of cyclic vectors defined in the text.

[1]  F. Wilczek,et al.  Geometric Phases in Physics , 1989 .

[2]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[3]  Yasushi Kondo,et al.  Geometric Quantum Gates, Composite Pulses, and Trotter-Suzuki Formulas , 2010, 1005.3917.

[4]  C. Hill Robust controlled-NOT gates from almost any interaction. , 2006, Physical review letters.

[5]  John Guckenheimer,et al.  Fixed point theory of iterative excitation schemes in NMR , 1985 .

[6]  Holonomic quantum computation with neutral atoms , 2002, quant-ph/0204030.

[7]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[8]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Jonathan A. Jones Quantum Computing with NMR , 2011 .

[10]  Jonathan A. Jones,et al.  Arbitrary precision composite pulses for NMR quantum computing. , 2007, Journal of magnetic resonance.

[11]  Y. Ota,et al.  Composite pulses in NMR as nonadiabatic geometric quantum gates , 2009, 0903.2295.

[12]  Sophie Shermer Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2011 .

[13]  Ray Freeman,et al.  NMR population inversion using a composite pulse , 1979 .

[14]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[15]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[16]  Mikio Nakahara,et al.  Quantum Computing - From Linear Algebra to Physical Realizations , 2008 .

[17]  Page,et al.  Geometrical description of Berry's phase. , 1987, Physical review. A, General physics.

[18]  T. Claridge High-Resolution NMR Techniques in Organic Chemistry , 1999 .

[19]  K. Brown,et al.  Multi-qubit compensation sequences , 2009, 0908.2593.

[20]  S. Wimperis,et al.  Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .

[21]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  C. Mead,et al.  The geometric phase in molecular systems , 1992 .

[23]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[24]  Frank Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[25]  Jonathan A. Jones Composite pulses in NMR quantum computation , 2009, 0906.4719.

[26]  Alexandre M. Souza,et al.  Robust dynamical decoupling , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[28]  M. Nakahara Geometry, Topology and Physics , 2018 .

[29]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[30]  Effect of noise on geometric logic gates for quantum computation , 2001, quant-ph/0105006.

[31]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[32]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[33]  Mikio Nakahara,et al.  Geometric quantum gates in liquid-state NMR based on a cancellation of dynamical phases , 2009 .

[34]  Jonathan A. Jones Robust Ising gates for practical quantum computation , 2003 .

[35]  M. Nakahara,et al.  Designing robust unitary gates: Application to concatenated composite pulses , 2011, 1105.0744.

[36]  K. R. Brown,et al.  Arbitrarily accurate composite pulse sequences (4 pages) , 2004 .

[37]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[38]  K. Życzkowski,et al.  Geometry of Quantum States: Index , 2007 .

[39]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .