Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES)

In this paper, a new fractional order stretch-twist-fold (STF) flow dynamical system is proposed. The stability analysis of the proposed system equilibria is accomplished and we establish that the system is exhibited chaos even for order less than 3. The active control method is applied to enquire the hybrid phase synchronization between two identical fractional order STF flow chaotic systems. These synchronized systems are applied to formulate an authenticated encryption scheme newly for message (text and image) recovery. It is widely applied in the field of secure communication. Numerical simulations are presented to validate the effectiveness of the proposed theory.

[1]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[2]  Xingyuan Wang,et al.  Chaos in the fractional-order complex Lorenz system and its synchronization , 2013 .

[3]  N. Laskin Fractional market dynamics , 2000 .

[4]  Edward Ott,et al.  Stretch, Twist, Fold: The Fast Dynamo , 1995 .

[5]  Mohammed-Salah Abdelouahab,et al.  A new chaotic attractor from hybrid optical bistable system , 2012 .

[6]  韩强,et al.  A fractional order hyperchaotic system derived from a Liu system and its circuit realization , 2013 .

[7]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .

[8]  Ivo Petráš,et al.  Method for simulation of the fractional order chaotic systems , 2006 .

[9]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[10]  Qigui Yang,et al.  Complex dynamics in the stretch-twist-fold flow , 2010 .

[11]  Kim,et al.  Fractal properties of the stretch-twist-fold magnetic dynamo. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Cheng-Shion Shieh,et al.  Hybrid control for synchronizing a chaotic system , 2011 .

[13]  Chin-Chen Chang,et al.  Authenticated encryption scheme without using a one way function , 1995 .

[14]  Pagavathigounder Balasubramaniam,et al.  Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography , 2013, Nonlinear Dynamics.

[15]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[16]  Guanrong Chen,et al.  A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.

[17]  刘崇新,et al.  Realization of fractional-order Liu chaotic system by circuit , 2007 .

[18]  Lei Sun,et al.  A fractional order hyperchaotic system derived from a Liu system and its circuit realization , 2013 .

[19]  R. A. Rueppel,et al.  Message recovery for signature schemes based on the discrete logarithm problem , 1994, EUROCRYPT.

[20]  Fangqi Chen,et al.  Sil'nikov chaos of the Liu system. , 2008, Chaos.

[21]  Mark R. Proctor,et al.  Topological constraints associated with fast dynamo action , 1985, Journal of Fluid Mechanics.

[22]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[23]  Xiangjun Wu,et al.  Dynamics analysis and hybrid function projective synchronization of a new chaotic system , 2012 .

[24]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[25]  Chien-Lung Hsu,et al.  Convertible authenticated encryption scheme , 2002, J. Syst. Softw..

[26]  Xiangjun Wu,et al.  A new chaotic system with fractional order and its projective synchronization , 2010 .

[27]  Zuolei Wang Chaos synchronization of an energy resource system based on linear control , 2010 .

[28]  Mayank Srivastava,et al.  Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method , 2013 .

[29]  Pagavathigounder Balasubramaniam,et al.  Synchronization of chaotic systems using feedback controller: An application to Diffie–Hellman key exchange protocol and ElGamal public key cryptosystem , 2014 .

[30]  H. K. Moffatt,et al.  On a class of steady confined Stokes flows with chaotic streamlines , 1990, Journal of Fluid Mechanics.

[31]  B. Yue,et al.  Chaotification in the stretch-twist-fold (STF) flow , 2013 .

[32]  Xuerong Shi,et al.  Adaptive synchronization of the energy resource systems with mismatched parameters via linear feedback control , 2012 .

[33]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[34]  B. Yue,et al.  Nonlinear analysis of stretch-twist-fold (STF) flow , 2013 .

[35]  P. Chang,et al.  A new chaotic attractor and its robust function projective synchronization , 2013 .

[36]  Jian-an Fang,et al.  Studying on the stability of fractional-order nonlinear system , 2012 .

[37]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[38]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[39]  O. Rössler An equation for continuous chaos , 1976 .

[40]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[41]  Safieddine Bouali,et al.  A novel strange attractor with a stretched loop , 2012 .

[42]  H. K. Moffatt Topological Fluid Mechanics , 1990 .

[43]  A. Algaba,et al.  Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)]. , 2011, Chaos.

[44]  Robert Rosner,et al.  STRETCH-TWIST-FOLD AND ABC NONLINEAR DYNAMOS : RESTRICTED CHAOS , 1997 .

[45]  Mohammad Saleh Tavazoei,et al.  A note on the stability of fractional order systems , 2009, Math. Comput. Simul..

[46]  A. Neishtadt,et al.  Changes in the adiabatic invariant and streamline chaos in confined incompressible Stokes flow. , 1996, Chaos.

[47]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.

[48]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[49]  Changshe Ma,et al.  Publicly verifiable authenticated encryption , 2003 .

[50]  Y. Zel’dovich,et al.  Origin of Magnetic Fields in Astrophysics (Turbulent "Dynamo" Mechanisms) , 1972 .

[51]  Konrad Bajer,et al.  Hamiltonian formulation of the equations of streamlines in three-dimensional steady flows , 1994 .