An Improved Approximation Algorithm for the Bandpass-2 Problem

The bandpass-2 problem (Bandpass-2, for short) is a generalization of the maximum traveling salesman problem (Max TSP, for short). Of particular interest is the difference between the two problems, where the edge weights in Bandpass-2 are dynamic rather than given at the front. A trivial approximation algorithm for Bandpass-2 can achieve a ratio of 0.5. Recently, Tong et al. [19] have presented a nontrivial approximation algorithm for Bandpass-2 that achieves a ratio of \(\frac{21}{40}\). In this paper, we present a new approximation algorithm that achieves a ratio of 0.5318.

[1]  Refael Hassin,et al.  Better approximations for max TSP , 2000, Inf. Process. Lett..

[2]  Zhi-Zhong Chen,et al.  Improved deterministic approximation algorithms for Max TSP , 2005, Inf. Process. Lett..

[3]  Sorin C. Popescu,et al.  Lidar Remote Sensing , 2011 .

[4]  Zhi-Zhong Chen,et al.  Improved Approximation Algorithms for Metric Max TSP , 2005, ESA.

[5]  Lusheng Wang,et al.  Frontiers in Algorithmics and Algorithmic Aspects in Information and Management - Joint International Conference, FAW-AAIM 2011, Jinhua, China, May 28-31, 2011. Proceedings , 2011, FAW-AAIM.

[6]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[7]  Zhi-Zhong Chen,et al.  An Improved Randomized Approximation Algorithm for Max TSP , 2005, J. Comb. Optim..

[8]  Zhi-Zhong Chen,et al.  Improved approximation algorithms for metric MaxTSP , 2007, J. Comb. Optim..

[9]  Aleksander Madry,et al.  A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem , 2008, APPROX-RANDOM.

[10]  Guohui Lin,et al.  On the Bandpass problem , 2011, J. Comb. Optim..

[11]  Wei Ding,et al.  An Improved Approximation Algorithm for the Bandpass Problem , 2012, FAW-AAIM.

[12]  Harold N. Gabow,et al.  An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems , 1983, STOC.

[13]  Harold Neil Gabow,et al.  Implementation of algorithms for maximum matching on nonbipartite graphs , 1973 .

[14]  Refael Hassin,et al.  An Approximation Algorithm for the Maximum Traveling Salesman Problem , 1998, Inf. Process. Lett..

[15]  Refael Hassin,et al.  A 7/8-approximation algorithm for metric Max TSP , 2002, Inf. Process. Lett..

[16]  Alexandr V. Kostochka,et al.  Polynomial algorithms with the estimates $frac 34$ and $frac 56$ for the traveling salesman problem of the maximum , 1985 .

[17]  Marcin Mucha,et al.  Deterministic 7/8-approximation for the metric maximum TSP , 2009, Theor. Comput. Sci..

[18]  Moshe Lewenstein,et al.  Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs , 2005, JACM.

[19]  Djangir A. Babayev,et al.  The bandpass problem: combinatorial optimization and library of problems , 2009, J. Comb. Optim..

[20]  Gerhard J. Woeginger,et al.  The Maximum Traveling Salesman Problem Under Polyhedral Norms , 1998, IPCO.