Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis

[1]  P. Northcott,et al.  Medulloblastoma , 2019, Nature Reviews Disease Primers.

[2]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[3]  Jennifer L. Hadley,et al.  A Single-Cell Transcriptional Atlas of the Developing Murine Cerebellum , 2018, Current Biology.

[4]  A. Philpott,et al.  The developmental origin of brain tumours: a cellular and molecular framework , 2018, Development.

[5]  Yun Lu,et al.  HOXA3 promotes tumor growth of human colon cancer through activating EGFR/Ras/Raf/MEK/ERK signaling pathway , 2018, Journal of cellular biochemistry.

[6]  G. Marko‐Varga,et al.  Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma , 2018, Oncotarget.

[7]  H. Drexler,et al.  KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia , 2018, Leukemia & lymphoma.

[8]  H. Li,et al.  The productions of atrial natriuretic peptide and arginine vasopressin in small cell lung cancer with brain metastases and their associations with hyponatremia. , 2017, European review for medical and pharmacological sciences.

[9]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[10]  A. Goldenberg,et al.  Intertumoral Heterogeneity within Medulloblastoma Subgroups. , 2017, Cancer cell.

[11]  C. Larsson,et al.  Loss of miR-514a-3p regulation of PEG3 activates the NF-kappa B pathway in human testicular germ cell tumors , 2017, Cell Death & Disease.

[12]  R. Handsaker,et al.  Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations , 2017, Nature.

[13]  Christina A. Castellani,et al.  VarScan2 analysis of de novo variants in monozygotic twins discordant for schizophrenia , 2017, Psychiatric genetics.

[14]  A. McMahon,et al.  Hedgehog Signaling: From Basic Biology to Cancer Therapy. , 2017, Cell chemical biology.

[15]  D. Beer,et al.  Oncogenic Potential of CYP24A1 in Lung Adenocarcinoma , 2017, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[16]  B. Conklin,et al.  BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence , 2016, Proceedings of the National Academy of Sciences.

[17]  K. Coombes,et al.  Cathepsin G is broadly expressed in acute myeloid leukemia and is an effective immunotherapeutic target , 2016, Leukemia.

[18]  R. Muschel,et al.  Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells , 2016, Oncogene.

[19]  G. Desir,et al.  Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer , 2016, Scientific Reports.

[20]  Helene Kretzmer,et al.  metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data , 2016, Genome research.

[21]  Roland Eils,et al.  Active medulloblastoma enhancers reveal subgroup-specific cellular origins , 2016, Nature.

[22]  J. Abraham,et al.  Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression , 2015, Oncogene.

[23]  L. Rönnstrand,et al.  The role of HOXB2 and HOXB3 in acute myeloid leukemia. , 2015, Biochemical and biophysical research communications.

[24]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[25]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[26]  Michael C. Rusch,et al.  Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[28]  R. Khanin,et al.  Overexpression of DDX43 Mediates MEK Inhibitor Resistance through RAS Upregulation in Uveal Melanoma Cells , 2014, Molecular Cancer Therapeutics.

[29]  Roland Eils,et al.  Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. , 2014, Cancer cell.

[30]  W. Weiss,et al.  The prenatal origins of cancer , 2014, Nature Reviews Cancer.

[31]  Andrew E. Teschendorff,et al.  ChAMP: 450k Chip Analysis Methylation Pipeline , 2014, Bioinform..

[32]  David E Larson,et al.  Using VarScan 2 for Germline Variant Calling and Somatic Mutation Detection , 2013, Current protocols in bioinformatics.

[33]  V. Amani,et al.  Characterization of Distinct Immunophenotypes across Pediatric Brain Tumor Types , 2013, The Journal of Immunology.

[34]  G. Enikolopov,et al.  A population of Nestin expressing progenitors in the cerebellum exhibits increased tumorigenicity , 2013, Nature Neuroscience.

[35]  Zizhen Yao,et al.  Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer , 2013, Epigenetics.

[36]  D. Chan,et al.  The Correlations of LMX1A and Osteopontin Expression to the Clinicopathologic Stages in Pancreatic Adenocarcinoma , 2013, Applied immunohistochemistry & molecular morphology : AIMM.

[37]  O. Paulsen,et al.  Stem Cells Expanded from the Human Embryonic Hindbrain Stably Retain Regional Specification and High Neurogenic Potency , 2013, The Journal of Neuroscience.

[38]  Volker Hovestadt,et al.  Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays , 2013, Acta Neuropathologica.

[39]  N. Jiang,et al.  HoxB3 promotes prostate cancer cell progression by transactivating CDCA3. , 2013, Cancer letters.

[40]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[41]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[42]  Austin G Smith,et al.  Automated Large-Scale Culture and Medium-Throughput Chemical Screen for Modulators of Proliferation and Viability of Human Induced Pluripotent Stem Cell–Derived Neuroepithelial-like Stem Cells , 2013, Journal of biomolecular screening.

[43]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[44]  Masao Nagasaki,et al.  Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells , 2012, Proceedings of the National Academy of Sciences.

[45]  R. Stallings,et al.  Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers , 2012, Genome Biology.

[46]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[47]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[48]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[49]  Ji-Young Kim,et al.  KDM3B Is the H3K9 Demethylase Involved in Transcriptional Activation of lmo2 in Leukemia , 2012, Molecular and Cellular Biology.

[50]  P. Northcott,et al.  Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. , 2012, Cancer cell.

[51]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[52]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[53]  M. Roussel,et al.  A mouse model of the most aggressive subgroup of human medulloblastoma. , 2012, Cancer cell.

[54]  P. Febbo,et al.  An animal model of MYC-driven medulloblastoma. , 2012, Cancer cell.

[55]  Matthew Trotter,et al.  Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons , 2012, PloS one.

[56]  M. Kool,et al.  Expression of BARHL1 in medulloblastoma is associated with prolonged survival in mice and humans , 2011, Oncogene.

[57]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[58]  P. Grandi,et al.  Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes , 2011, Nature Biotechnology.

[59]  Yiai Tong,et al.  Subtypes of medulloblastoma have distinct developmental origins , 2010, Nature.

[60]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[61]  Austin G Smith,et al.  Imaging-based chemical screens using normal and glioma-derived neural stem cells. , 2010, Biochemical Society transactions.

[62]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[63]  S. Vandenberg,et al.  Pleiotropic role for MYCN in medulloblastoma. , 2010, Genes & development.

[64]  A. M. Houghton,et al.  Neutrophil Elastase-Mediated Degradation of IRS-1 Accelerates Lung Tumor Growth , 2010, Nature Medicine.

[65]  M. Hasegawa,et al.  Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[66]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[67]  Mark Bernstein,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[68]  O. Brüstle,et al.  A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration , 2009, Proceedings of the National Academy of Sciences.

[69]  G. Riggins,et al.  Coexpression of neuronatin splice forms promotes medulloblastoma growth. , 2008, Neuro-oncology.

[70]  Robert Machold,et al.  Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. , 2008, Cancer cell.

[71]  Tao Sun,et al.  Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. , 2008, Cancer cell.

[72]  K. Millen,et al.  Cerebellar development and disease , 2008, Current Opinion in Neurobiology.

[73]  Hong Sun,et al.  bHLH-Orange Transcription Factors in Development and Cancer , 2007, Translational oncogenomics.

[74]  M. Olivier,et al.  Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database , 2007, Human mutation.

[75]  J. Mesirov,et al.  Metagene projection for cross-platform, cross-species characterization of global transcriptional states , 2007, Proceedings of the National Academy of Sciences.

[76]  F. Zindy,et al.  Genetic alterations in mouse medulloblastomas and generation of tumors de novo from primary cerebellar granule neuron precursors. , 2007, Cancer research.

[77]  Heather L. Miller,et al.  Patched2 modulates tumorigenesis in patched1 heterozygous mice. , 2006, Cancer research.

[78]  B. Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005 .

[79]  J. Kessler,et al.  Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma , 2005, Development.

[80]  M. Scott,et al.  Communicating with Hedgehogs , 2005, Nature Reviews Molecular Cell Biology.

[81]  M. Katoh,et al.  Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT - beta-catenin - TCF signaling pathway. , 2002, International journal of molecular medicine.

[82]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[83]  Huda Y. Zoghbi,et al.  Genetic regulation of cerebellar development , 2001, Nature Reviews Neuroscience.

[84]  F. Gage,et al.  Mammalian neural stem cells. , 2000, Science.

[85]  M. Hatten,et al.  The role of the rhombic lip in avian cerebellum development. , 1999, Development.

[86]  A. Ruiz i Altaba,et al.  Sonic hedgehog regulates the growth and patterning of the cerebellum. , 1999, Development.

[87]  M. Scott,et al.  Altered neural cell fates and medulloblastoma in mouse patched mutants. , 1997, Science.

[88]  R. Myers,et al.  Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome , 1996, Science.

[89]  Michael Dean,et al.  Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome , 1996, Cell.

[90]  K. Kinzler,et al.  The molecular basis of Turcot's syndrome. , 1995, The New England journal of medicine.

[91]  R. Packer,et al.  The impact of molecular analysis on the survival of children with embryonal tumors. , 2016, Translational pediatrics.

[92]  F. Elmalı,et al.  Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer , 2013, Medical Oncology.

[93]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[94]  Steven J. M. Jones,et al.  Subgroup-specific structural variation across 1,000 medulloblastoma genomes , 2012, Nature.

[95]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[96]  M. Scott,et al.  Control of Neuronal Precursor Proliferation in the Cerebellum by Sonic Hedgehog , 1999, Neuron.

[97]  D. Evans,et al.  The gene for the naevoid basal cell carcinoma syndrome acts as a tumour-suppressor gene in medulloblastoma. , 1997, British Journal of Cancer.