Limited information capacity as a source of inertia

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[3]  R. Lucas Expectations and the neutrality of money , 1972 .

[4]  R. Lucas Econometric policy evaluation: A critique , 1976 .

[5]  Allan H. Meltzer,et al.  Stabilization of the domestic and international economy , 1977 .

[6]  Eytan Sheshinski,et al.  Inflation and Costs of Price Adjustment , 1977 .

[7]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[8]  G. Calvo Staggered prices in a utility-maximizing framework , 1983 .

[9]  E. Sheshinski,et al.  Optimal Pricing, Inflation, and the Cost of Price Adjustment , 1993 .

[10]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[11]  Lones Smith,et al.  The Optimal Level of Experimentation , 2000 .

[12]  Bennett T. McCallum,et al.  Stickiness: A comment , 1998 .

[13]  Timothy Van Zandt,et al.  Real-Time Decentralized Information Processing as a Model of Organizations with Boundedly Rational Agents , 1999 .

[14]  J. Galí,et al.  The Science of Monetary Policy: A New Keynesian Perspective , 1999 .

[15]  Giuseppe Moscarini,et al.  The Law of Large Demand for Information , 2000 .

[16]  David I. Laibson,et al.  The 6D Bias and the Equity-Premium Puzzle , 2001, NBER Macroeconomics Annual.

[17]  N. Mankiw,et al.  Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve , 2001 .

[18]  C. Sims Implications of rational inattention , 2003 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .