Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions

The application of the Rayleigh-Ritz method for approximating the eigenvalues and eigenfunctions of linear eigenvalue problems in several dimensions is investigated. The object is to improve upon known error estimates for the approximate eigenfunctions. Results for the Galerkin approximation of the eigenfunctions are developed under varying assumptions on the boundary conditions and domain of definition of the eigenvalue problem. These results, coupled with a previous result relating Galerkin and Rayleigh-Ritz approximation of the eigenfunctions, are then used to obtain improved error estimates for the approximate eigenfunctions in theL2 and uniform norms.

[1]  E. Kamke Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen. IV , 1940 .

[2]  Richard S. Varga,et al.  Error bounds for spline and L-spline interpolation , 1972 .

[3]  Burton Wendroff Bounds for Eigenvalues of Some Differential Operators by the Rayleigh-Ritz Method , 1965 .

[4]  On higher-order numerical methods for nonlinear two-point boundary value problems , 1969 .

[5]  Richard Courant,et al.  Methods of Mathematical Physics, 1 , 1955 .

[6]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[7]  P. Hartman Ordinary Differential Equations , 1965 .

[8]  P. G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value Problems , 1968 .

[9]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[10]  Carl de Boor,et al.  On uniform approximation by splines , 1968 .

[11]  S. H. Gould Variational Methods for Eigenvalue Problems: An Introduction to the Weinstein Method of Intermediate Problems , 1966 .

[12]  R. Varga,et al.  L-Splines , 1967 .

[13]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[14]  J. Nitsche,et al.  Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen , 1969 .

[15]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1968 .

[16]  E. L. Ince Ordinary differential equations , 1927 .

[17]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[18]  R. Varga,et al.  Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .

[19]  J. Pierce,et al.  Error bounds for the Galerkin method applied to singular and nonsingular boundary value problems , 1972 .

[20]  C. Fox Variational Methods for Eigenvalue Problems. By S. H. Gould. Pp. xiv, 179. 48s. 1957. (University of Toronto Press and Oxford University Press) , 1959, The Mathematical Gazette.

[21]  Singular self-adjoint boundary value problems for the differential equation = , 1958 .

[22]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[23]  Richard S. Varga,et al.  Higher Order Convergence Results for the Rayleigh–Ritz Method Applied to Eigenvalue Problems. I: Estimates Relating Rayleigh–Ritz and Galerkin Approximations to Eigenfunctions , 1972 .

[24]  L. Schumaker,et al.  On Lg-splines☆ , 1969 .

[25]  C. A. Hall,et al.  On error bounds for spline interpolation , 1968 .

[26]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[27]  Richard S. Varga,et al.  Application of Besov spaces to spline approximation , 1971 .

[28]  L. Collatz The numerical treatment of differential equations , 1961 .

[29]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .