Evaluating Cooperative ARQ Protocols from the Perspective of Physical Layer Security

[1]  Marco Levorato,et al.  Steady state analysis of coded cooperative networks with HARQ protocol , 2009, IEEE Transactions on Communications.

[2]  Matthew C. Valenti,et al.  Practical relay networks: a generalization of hybrid-ARQ , 2005 .

[3]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[4]  Ender Tekin,et al.  The General Gaussian Multiple-Access and Two-Way Wiretap Channels: Achievable Rates and Cooperative Jamming , 2007, IEEE Transactions on Information Theory.

[5]  Hyundong Shin,et al.  Secure diversity-multiplexing tradeoffs in MIMO relay channels , 2009, 2009 IEEE International Symposium on Information Theory.

[6]  H. Vincent Poor,et al.  On the Throughput of Secure Hybrid-ARQ Protocols for Gaussian Block-Fading Channels , 2007, IEEE Transactions on Information Theory.

[7]  Rahul Vaze Throughput-Delay-Reliability Tradeoff with ARQ in Wireless Ad Hoc Networks , 2011, IEEE Transactions on Wireless Communications.

[8]  Gregory W. Wornell,et al.  Secure Broadcasting Over Fading Channels , 2008, IEEE Transactions on Information Theory.

[9]  Weifeng Su,et al.  Cooperative Decode-and-Forward ARQ Relaying: Performance Analysis and Power Optimization , 2010, IEEE Transactions on Wireless Communications.

[10]  Dongmei Zhang,et al.  Throughput and energy efficiency of a novel cooperative ARQ strategy for wireless sensor networks , 2012, Comput. Commun..

[11]  Richard E. Blahut,et al.  Secrecy capacity of SIMO and slow fading channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[13]  Raymond Knopp,et al.  Diversity-Multiplexing-Delay Tradeoff in Half-Duplex ARQ Relay Channels , 2007, IEEE Transactions on Information Theory.

[14]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[15]  Matthew R. McKay,et al.  Rethinking the Secrecy Outage Formulation: A Secure Transmission Design Perspective , 2011, IEEE Communications Letters.

[16]  Keivan Navaie,et al.  Diversity Multiplexing Trade-off in ARQ Based Cooperative and Non-Cooperative Communication over General Channel Dynamics , 2011, IEEE Transactions on Wireless Communications.

[17]  Hatem Boujemaa Delay Analysis of Cooperative Truncated HARQ With Opportunistic Relaying , 2009, IEEE Transactions on Vehicular Technology.

[18]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[19]  Lajos Hanzo,et al.  Security Versus Reliability Analysis of Opportunistic Relaying , 2013, IEEE Transactions on Vehicular Technology.

[20]  Ross D. Murch,et al.  Achievable Diversity-Multiplexing-Delay Tradeoff for ARQ Cooperative Broadcast Channels , 2008, 2007 IEEE International Conference on Communications.

[21]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[22]  Roy D. Yates,et al.  Discrete Memoryless Interference and Broadcast Channels With Confidential Messages: Secrecy Rate Regions , 2007, IEEE Transactions on Information Theory.

[23]  Hesham El Gamal,et al.  The Relay–Eavesdropper Channel: Cooperation for Secrecy , 2006, IEEE Transactions on Information Theory.

[24]  Andrea Fumagalli,et al.  Delay models of single-source single-relay cooperative ARQ protocols in slotted radio networks with Poisson frame arrivals , 2008, TNET.

[25]  Raef Bassily,et al.  Cooperative Security at the Physical Layer: A Summary of Recent Advances , 2013, IEEE Signal Processing Magazine.

[26]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.