Model Independent Parametric Decision Making

Accurate knowledge of the effect of parameter uncertainty on process design and operation is essential for optimal and feasible operation of a process plant. Existing approaches dealing with uncertainty in the design and process operations level assume the existence of a well defined model to represent process behavior and in almost all cases convexity of the involved equations. However, most of the realistic case studies cannot be described by well characterised models. Thus, a new approach is presented in this paper based on the idea of High Dimensional Model Reduction technique which utilize a reduced number of model runs to build an uncertainty propagation model that expresses process feasibility. Building on this idea a systematic iterative procedure is developed for design under uncertainty with a unique characteristic of providing parametric expression of the optimal objective with respect to uncertain parameters. The proposed approach treats the system as a black box since it does not rely on the nature of the mathematical model of the process, as is illustrated through a number of examples.

[1]  Larry Jenkins Parametric Mixed Integer Programming: An Application to Solid Waste Management , 1982 .

[2]  Naonori Nishida,et al.  A branch-and-bound algorithm for 0-1 parametric mixed integer programming , 1985 .

[3]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[4]  Larry Jenkins,et al.  Parametric methods in integer linear programming , 1991 .

[5]  Manfred Morari,et al.  Design of resilient processing plants—III: A general framework for the assessment of dynamic resilience , 1983 .

[6]  T. Gal,et al.  Linear parametric programming—A brief survey , 1984 .

[7]  Efstratios N. Pistikopoulos,et al.  A novel flexibility analysis approach for processes with stochastic parameters , 1990 .

[8]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I: Formulation and theory , 1985 .

[9]  Ignacio E. Grossmann,et al.  Decomposition strategy for designing flexible chemical plants , 1982 .

[10]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[11]  Marianthi G. Ierapetritou,et al.  New Approach for Quantifying Process Feasibility: Convex and 1-D Quasi-Convex Regions , 2001 .

[12]  Nikolaos V. Sahinidis,et al.  Optimization model for long range planning in the chemical industry , 1989 .

[13]  Marianthi G. Ierapetritou,et al.  Determination of operability limits using simplicial approximation , 2002 .

[14]  Marianthi G. Ierapetritou,et al.  Framework for evaluating the feasibility/operability of nonconvex processes , 2003 .

[15]  H. Jongen,et al.  On parametric nonlinear programming , 1991 .

[16]  Christodoulos A. Floudas,et al.  Stochastic programming in process synthesis: A two-stage model with MINLP recourse for multiperiod heat-integrated distillation sequences , 1992 .

[17]  Marianthi G. Ierapetritou,et al.  Parametric process synthesis for general nonlinear models , 2003, Comput. Chem. Eng..

[18]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[19]  L. Biegler,et al.  A reduced hessian strategy for sensitivity analysis of optimal flowsheets , 1987 .

[20]  Hiromu Ohno,et al.  Optimal Design of a Large Complex System from the Viewpoint of Sensitivity Analysis , 1970 .

[21]  Efstratios N. Pistikopoulos,et al.  A hybrid parametric/stochastic programming approach for mixed-integer nonlinear problems under uncertainty , 1997 .

[22]  H. Rabitz,et al.  An efficient chemical kinetics solver using high dimensional model representation , 1999 .

[23]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[24]  Manfred Morari,et al.  Design of resilient processing plants—VIII. A resilience index for heat exchanger networks , 1985 .

[25]  S. W. Wang,et al.  Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models , 1999 .

[26]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[27]  Efstratios N. Pistikopoulos,et al.  An optimization approach for process engineering problems under uncertainty , 1996 .

[28]  F. P. Stein,et al.  A theory of design reliability using probability and fuzzy sets , 1988 .

[29]  Larry Jenkins,et al.  A computational comparison of gomory and knapsack cuts , 1987, Comput. Oper. Res..

[30]  Joel P. Conte,et al.  Reliability evaluation of reinforced concrete beams , 1994 .

[31]  John H. Seinfeld,et al.  Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST) , 1982 .

[32]  Ignacio E. Grossmann,et al.  Design optimization of stochastic flexibility , 1993 .

[33]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .