Option pricing with regime switching by trinomial tree method

We present a fast and simple tree model to price simple and exotic options in Markov Regime Switching Model (MRSM) with multi-regime. We modify the trinomial tree model of Boyle (1986) [12] by controlling the risk neutral probability measure in different regime states to ensure that the tree model can accommodate the data of all different regimes at the same time preserving its combining tree structure. In MRSM, the market might not be complete, therefore we provide some ideas and discussions on managing the regime switching risk in support of our results.

[1]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[2]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[3]  Edward Omberg A Note on the Convergence of Binomial‐Pricing and Compound‐Option Models , 1987 .

[4]  Feng Li Option Pricing , 2000 .

[5]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[6]  Xin Guo,et al.  Information and option pricings , 2001 .

[7]  Robert J. Elliott,et al.  Option pricing and Esscher transform under regime switching , 2005 .

[8]  Nicolas P. B. Bollen Valuing Options in Regime-Switching Models , 1998 .

[9]  Виктор Павлович Маслов,et al.  О минимизации и максимизации энтропии в различных дисциплинах@@@On minimization and maximization of entropy in various disciplines , 2003 .

[10]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[11]  M. Schweizer Approximation pricing and the variance-optimal martingale measure , 1996 .

[12]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[13]  Rajeev Motwani,et al.  A simple approach for pricing equity options with Markov switching state variables , 2006 .

[14]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[15]  D. Hobson Option Pricing In Incomplete Markets , 2007 .

[16]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[17]  Phelim P. Boyle,et al.  An explicit finite difference approach to the pricing of barrier options , 1998 .

[18]  B. Kamrad,et al.  Multinomial Approximating Models for Options with k State Variables , 1991 .

[19]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .

[20]  Marco Wilkens,et al.  Lean Trees—A General Approach for Improving Performance of Lattice Models for Option Pricing , 2004 .

[21]  Rogemar S. Mamon,et al.  Explicit solutions to European options in a regime-switching economy , 2005, Oper. Res. Lett..

[22]  Phelim P. Boyle,et al.  Pricing exotic options under regime switching , 2007 .

[23]  P. Boyle Option Valuation Using a Three Jump Process , 1986 .

[24]  Phelim P. Boyle,et al.  Pricing of New Securities in an Incomplete Market: the Catch 22 of No‐Arbitrage Pricing , 2001 .

[25]  Vasant Naik,et al.  Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns , 1993 .

[26]  Robert J. Elliott,et al.  American options with regime switching , 2002 .

[27]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[28]  Bin Gao,et al.  The adaptive mesh model: a new approach to efficient option pricing , 1999 .