Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant

A method is presented to enhance solar penetration of a hybrid solar-combined cycle power plant integrated with a packed-bed thermal energy storage system. The hybrid plant is modeled using Simulink and employs systems-level automation. Feedback control regulates net power, collector temperature, and turbine firing temperature. A base-case plant is presented, and plant design is systematically modified to improve solar energy utilization. A novel recycling configuration enables robust control of collector temperature and net power during times of high solar activity. Recycling allows for improved solar energy utilization and a yearly solar fraction over 30%, while maintaining power control. During significant solar activity, excessive collector temperature and power setpoint mismatch are still observed with the proposed recycling configuration. A storage bypass is integrated with recycling, to lower storage charging rate. This operation results in diverting only a fraction of air flow to storage, which lowers the storage charging rate and improves solar energy utilization. Recycling with a storage bypass can handle larger solar inputs and a solar fraction over 70% occurs when following a drastic peaking power load. The novel plant configuration is estimated to reduce levelized cost of the plant by over 4% compared to the base-case plant.

[1]  Hongguang Jin,et al.  Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China , 2014 .

[2]  R. Saini,et al.  A review on packed bed solar energy storage systems , 2010 .

[3]  Lingai Luo,et al.  Thermal energy storage systems for concentrated solar power plants , 2017 .

[4]  Ryan P. Anderson,et al.  Thermal energy storage with supercritical carbon dioxide in a packed bed: Modeling charge-discharge cycles , 2018, The Journal of Supercritical Fluids.

[5]  Eduardo F. Camacho,et al.  Model Predictive Control In Solar Trough Plants: A Review , 2015 .

[6]  Abdallah Khellaf,et al.  A review of studies on central receiver solar thermal power plants , 2013 .

[7]  Kody M. Powell,et al.  Modeling and control of a solar thermal power plant with thermal energy storage , 2012 .

[8]  Abdolsaeid Ganjeh Kaviri,et al.  Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants , 2012 .

[9]  P. Stroeve,et al.  Innovation in concentrated solar power , 2011 .

[10]  G. Fang,et al.  An overview of thermal energy storage systems , 2018 .

[11]  Manuel Berenguel,et al.  Control of thermal solar energy plants , 2014 .

[12]  Miriam Ebert,et al.  Solugas – Operation Experience of the First Solar Hybrid Gas Turbine System at MW Scale , 2014 .

[13]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[14]  Manuel Valdés,et al.  Optimization of heat recovery steam generators for combined cycle gas turbine power plants , 2001 .

[15]  Paul Denholm,et al.  How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power , 2012, Proceedings of the IEEE.

[16]  Alejandro Medina,et al.  Thermodynamic modeling of a hybrid solar gas-turbine power plant , 2015 .

[17]  João M. Lemos,et al.  Cascade control of a distributed collector solar field , 1997 .

[18]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .

[19]  Kody M. Powell,et al.  Hybrid Concentrated Solar Thermal Power Systems: A Review , 2017 .

[20]  Elias K. Stefanakos,et al.  Thermal energy storage technologies and systems for concentrating solar power plants , 2013 .

[21]  Alain Ferriere,et al.  Impact of thermal energy storage integration on the performance of a hybrid solar gas-turbine power plant , 2016 .

[22]  D. E. Beasley,et al.  Transient response of a packed bed for thermal energy storage , 1983 .

[23]  José Antonio Brioso,et al.  Solugas – Comprehensive analysis of the solar hybrid Brayton plant , 2016 .

[24]  Paul Gauché,et al.  Rock bed thermal storage: Concepts and costs , 2016 .

[25]  R. P. Merchán,et al.  Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant , 2016 .

[26]  Eduardo F. Camacho,et al.  Optimal operation in solar trough plants: A case study , 2013 .

[27]  T. J. Sheer,et al.  Parametric Analysis of a High Temperature Packed Bed Thermal Storage Design for a Solar Gas Turbine , 2015 .

[28]  Amos Madhlopa,et al.  An integrated combined cycle system driven by a solar tower: A review , 2016 .

[29]  Esko Juuso,et al.  Smart adaptive control of a solar collector field , 2014 .

[30]  Abraham Kribus,et al.  A solar-driven combined cycle power plant , 1998 .

[31]  A. Ferrière,et al.  Simulation of a hybrid solar gas-turbine cycle with storage integration , 2014 .

[32]  Kody M. Powell,et al.  Dynamic simulation, control, and performance evaluation of a synergistic solar and natural gas hybrid power plant , 2019, Energy Conversion and Management.

[33]  Manuel Berenguel,et al.  Control of Solar Power Systems: a survey , 2010 .

[34]  Yongping Yang,et al.  A novel hybrid storage system integrating a packed-bed thermocline tank and a two-tank storage system for concentrating solar power (CSP) plants. , 2016 .

[35]  Thorsten Denk,et al.  Test and evaluation of a solar powered gas turbine system , 2006 .

[36]  Germain Augsburger,et al.  Thermoeconomic optimization of a combined-cycle solar tower power plant , 2012 .

[37]  G. Barigozzi,et al.  Thermal performance prediction of a solar hybrid gas turbine , 2012 .

[38]  Stuart White,et al.  Solar Tower-biomass Hybrid Plants – Maximizing Plant Performance , 2014 .

[39]  José Luis Guzmán,et al.  A switching control strategy applied to a solar collector field , 2011 .