Computational analysis of world music corpora

The comparison of world music cultures has been considered in musicological research since the end of the 19th century. Traditional methods from the field of comparative musicology typically involve the process of manual music annotation. While this provides expert knowledge, the manual input is timeconsuming and limits the potential for large-scale research. This thesis considers computational methods for the analysis and comparison of world music cultures. In particular, Music Information Retrieval (MIR) tools are developed for processing sound recordings, and data mining methods are considered to study similarity relationships in world music corpora. MIR tools have been widely used for the study of (mainly) Western music. The first part of this thesis focuses on assessing the suitability of audio descriptors for the study of similarity in world music corpora. An evaluation strategy is designed to capture challenges in the automatic processing of world music recordings and different state-of-the-art descriptors are assessed. Following this evaluation, three approaches to audio feature extraction are considered, each addressing a different research question. First, a study of singing style similarity is presented. Singing is one of the most common forms of musical expression and it has played an important role in the oral transmission of world music. Hand-designed pitch descriptors are used to model aspects of the singing voice and clustering methods reveal singing style similarities in world music. Second, a study on music dissimilarity is performed. While musical exchange is evident in the history of world music it might be possible that some music cultures have resisted external musical influence. Low-level audio features are combined with machine learning methods to find music examples that stand out in a world music corpus, and geographical patterns are examined. The last study models music similarity using descriptors learned automatically with deep neural networks. It focuses on identifying music examples that appear to be similar in their audio content but share no (obvious) geographical or cultural links in their metadata. Unexpected similarities modelled in this way uncover possible hidden links between world music cultures. This research investigates whether automatic computational analysis can uncover meaningful similarities between recordings of world music. Applications derive musicological insights from one of the largest world music corpora studied so far. Computational analysis as proposed in this thesis advances the state-of-the-art in the study of world music and expands the knowledge and understanding of musical exchange in the world.

[1]  Gerhard Widmer,et al.  Improvements of Audio-Based Music Similarity and Genre Classificaton , 2005, ISMIR.

[2]  A. Lomax,et al.  Folk Song Style and Culture (American Association for the Advancement of Science Publication No. 88) , 1969 .

[3]  Chris Walshaw,et al.  A statistical analysis of the ABC music notation corpus: exploring duplication , 2014 .

[4]  Matthias Mauch,et al.  The Minor fall, the Major lift: inferring emotional valence of musical chords through lyrics , 2015, Royal Society Open Science.

[5]  E. Schellenberg,et al.  Emotional Cues in American Popular Music: Five Decades of the Top 40 , 2012 .

[6]  Peter Kabal,et al.  Speech/music discrimination for multimedia applications , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[7]  O. Lartillot,et al.  A MATLAB TOOLBOX FOR MUSICAL FEATURE EXTRACTION FROM AUDIO , 2007 .

[8]  Mark Lindley,et al.  The New Grove Dictionary of Music and Musicians , 2001 .

[9]  Juan Pablo Bello,et al.  Structured Training for Large-Vocabulary Chord Recognition , 2017, ISMIR.

[10]  Emilia Gómez,et al.  Musical genre classification using melody features extracted from polyphonic music signals , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Cara Stacey,et al.  Analytical Studies in World Music , 2013 .

[12]  Simon Dixon,et al.  Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency , 2015 .

[13]  Marc Leman Systematic musicology at the crossroads of modern music research. , 2008 .

[14]  Steven Feld,et al.  Sound Structure as Social Structure , 1984 .

[15]  S. S. Stevens,et al.  The Relation of Pitch to Frequency: A Revised Scale , 1940 .

[16]  J. Russell Core affect and the psychological construction of emotion. , 2003, Psychological review.

[17]  Simon Dixon,et al.  On the Evaluation of Rhythmic and Melodic Descriptors for Music Similarity , 2016, ISMIR.

[18]  Daniel P. W. Ellis,et al.  Locating singing voice segments within music signals , 2001, Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575).

[19]  José Miguel Díaz-Báñez,et al.  Characterization and Similarity in A Cappella Flamenco Cantes , 2010, ISMIR.

[20]  R. Veltkamp,et al.  Collaboration Perspectives for Folk Song Research and Music Information Retrieval: The Indispensable Role of Computational Musicology , 2009 .

[21]  Bob L. Sturm,et al.  Analysing Scattering-Based Music Content Analysis Systems: Where's the Music? , 2016, ISMIR.

[22]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[23]  Vasudeva Varma,et al.  Music Information Retrieval: Recent Developments and Applications , 2014 .

[24]  Karin Dressler,et al.  An Auditory Streaming Approach for Melody Extraction from Polyphonic Music , 2011, ISMIR.

[25]  Rémi Gribonval,et al.  Adaptation of Bayesian Models for Single-Channel Source Separation and its Application to Voice/Music Separation in Popular Songs , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[26]  Xavier Serra,et al.  Score Informed Tonic Identification for Makam Music of Turkey , 2013, ISMIR.

[27]  Vladimir Viro,et al.  Peachnote: Music Score Search and Analysis Platform , 2011, ISMIR.

[28]  Pablo H. Rodríguez Zivic,et al.  Perceptual basis of evolving Western musical styles , 2013, Proceedings of the National Academy of Sciences.

[29]  Eric Thul and Godfried T. Toussaint A Comparative Phylogenetic-Tree Analysis of African Timelines and North Indian Talas , 2008 .

[30]  Frans Wiering,et al.  In Their Own Words: Using Text Analysis to Identify Musicologists' Attitudes towards Technology , 2015, ISMIR.

[31]  Xavier Serra,et al.  Data-Driven Exploration of Melodic Structure in Hindustani Music , 2016, ISMIR.

[32]  Evelyne Heyer,et al.  The Evolution of Musical Diversity: The Key Role of Vertical Transmission , 2016, PloS one.

[33]  Steven Brown,et al.  Universals in the world’s musics , 2013 .

[34]  Emilia Gómez,et al.  Melody Extraction From Polyphonic Music Signals Using Pitch Contour Characteristics , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[35]  Markus Schedl,et al.  From Improved Auto-Taggers to Improved Music Similarity Measures , 2012, Adaptive Multimedia Retrieval.

[36]  James Barrett,et al.  World Music, nation and postcolonialism , 1996 .

[37]  Darrell Conklin,et al.  Mining Musical Traits of Social Functions in Native American Music , 2016, ISMIR.

[38]  Thomas Fillon,et al.  Telemeta: An open-source web framework for ethnomusicological audio archives management and automatic analysis , 2014, DLfM '14.

[39]  Shashidhar G. Koolagudi,et al.  Classification of vocal and non-vocal regions from audio songs using spectral features and pitch variations , 2015, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE).

[40]  Mark B. Sandler,et al.  Automatic Tagging Using Deep Convolutional Neural Networks , 2016, ISMIR.

[41]  Jeff Todd Titon,et al.  Worlds of Music: An Introduction to the Music of the World's Peoples , 1986 .

[42]  D. Conklin,et al.  Comparative pattern analysis of cretan folk songs , 2010, MML '10.

[43]  Justin Salamon,et al.  Deep Salience Representations for F0 Estimation in Polyphonic Music , 2017, ISMIR.

[44]  A Lomax,et al.  The evolutionary taxonomy of culture. , 1972, Science.

[45]  Simon Dixon,et al.  Automatic detection of outliers in world music collections , 2016 .

[46]  Beth Logan,et al.  Mel Frequency Cepstral Coefficients for Music Modeling , 2000, ISMIR.

[47]  George Tzanetakis,et al.  MARSYAS: a framework for audio analysis , 1999, Organised Sound.

[48]  Maria Panteli,et al.  A Quantitative Comparison of Chrysanthine Theory and Performance Practice of Scale Tuning, Steps, and Prominence of the Octoechos in Byzantine Chant , 2013 .

[49]  Sebastian Stober,et al.  Classifying EEG Recordings of Rhythm Perception , 2014, ISMIR.

[50]  Patrick E. Savage,et al.  The structure of cross-cultural musical diversity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[51]  François Pachet,et al.  "The way it Sounds": timbre models for analysis and retrieval of music signals , 2005, IEEE Transactions on Multimedia.

[52]  Emilia Gómez Gutiérrez,et al.  Tonal description of music audio signals , 2006 .

[53]  Marián Boguñá,et al.  Measuring the Evolution of Contemporary Western Popular Music , 2012, Scientific Reports.

[54]  David M. W. Powers,et al.  Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation , 2011, ArXiv.

[55]  Daniel P. W. Ellis,et al.  MIR_EVAL: A Transparent Implementation of Common MIR Metrics , 2014, ISMIR.

[56]  J. Stephen Downie,et al.  Interdisciplinary Communities and Research Issues in Music Information Retrieval , 2002, ISMIR.

[57]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[58]  F. Wiering,et al.  A Comparison between Global and Local Features for Computational Classification of Folk Song Melodies , 2013 .

[59]  David Clarke,et al.  On Not Losing Heart: A Response to Savage and Brown's "Toward a New Comparative Musicology" , 2014 .

[60]  Emilia Gómez,et al.  Music and Geography: Content Description of Musical Audio from Different Parts of the World , 2009, ISMIR.

[61]  Douglas Eck,et al.  Learning Features from Music Audio with Deep Belief Networks , 2010, ISMIR.

[62]  Hema A. Murthy,et al.  Motif Spotting in an Alapana in Carnatic Music , 2013, ISMIR.

[63]  Hideki Kawahara,et al.  YIN, a fundamental frequency estimator for speech and music. , 2002, The Journal of the Acoustical Society of America.

[64]  B. Bronson,et al.  Prolegomena to a Study of the Principal Melodic Families of British-American Folk Song , 1950 .

[65]  José Miguel Díaz-Báñez,et al.  Corpus COFLA , 2016, ACM Journal on Computing and Cultural Heritage.

[66]  E. Prame Measurements of the vibrato rate of ten singers , 1994 .

[67]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[68]  D. K. Scherrer,et al.  An Experiment in the Computer Measurement of Melodic Variation in Folksong , 1971 .

[69]  Takuya Fujishima,et al.  Realtime Chord Recognition of Musical Sound: a System Using Common Lisp Music , 1999, ICMC.

[70]  Jaakko Astola,et al.  Analysis of the meter of acoustic musical signals , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[71]  Andreas F. Ehmann,et al.  Modeling Genre with the Music Genome Project: Comparing Human-Labeled Attributes and Audio Features , 2015, ISMIR.

[72]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[73]  X. Rodet,et al.  Vibrato : detection , estimation , extraction , modi cation , 1999 .

[74]  Zheng Yuan-zhe The Harmless Drudge:Defining Ethnomusicology , 2007 .

[75]  Andy South,et al.  rworldmap : a new R package for mapping global data , 2011, R J..

[76]  Patrick E. Savage,et al.  Correlations in the population structure of music, genes and language , 2014, Proceedings of the Royal Society B: Biological Sciences.

[77]  Bruno Nettl The Study of Ethnomusicology: Thirty-Three Discussions , 2015 .

[78]  Andrew Y. Ng,et al.  Learning Feature Representations with K-Means , 2012, Neural Networks: Tricks of the Trade.

[79]  Gaël Richard,et al.  Source/Filter Model for Unsupervised Main Melody Extraction From Polyphonic Audio Signals , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[80]  Eric D. Scheirer,et al.  Tempo and beat analysis of acoustic musical signals. , 1998, The Journal of the Acoustical Society of America.

[81]  Juhan Nam,et al.  A Deep Bag-of-Features Model for Music Auto-Tagging , 2015, ArXiv.

[82]  Georgios Tziritas,et al.  A speech/music discriminator based on RMS and zero-crossings , 2005, IEEE Transactions on Multimedia.

[83]  Frans Wiering,et al.  Digital Musicology and MIR: Papers, Projects and Challenges , 2013 .

[84]  Masataka Goto,et al.  A feedback framework for improved chord recognition based on NMF-based approximate note transcription , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[85]  Cory McKay,et al.  Automatic music classification with jmir , 2010 .

[86]  Arthur Flexer,et al.  Effects of Album and Artist Filters in Audio Similarity Computed for Very Large Music Databases , 2010, Computer Music Journal.

[87]  Frans Wiering,et al.  The Meertens Tune Collections , 2014 .

[88]  John Makhoul,et al.  LPCW: An LPC vocoder with linear predictive spectral warping , 1976, ICASSP.

[89]  Alan Lomax Folk Song Style and Culture , 1969 .

[90]  D. Huron,et al.  On the Virtuous and the Vexatious in an Age of Big Data , 2013 .

[91]  Mathieu Bergeron,et al.  Associations between Musicology and Music Information Retrieval , 2011, ISMIR.

[92]  Benjamin Schrauwen,et al.  Multiscale Approaches To Music Audio Feature Learning , 2013, ISMIR.

[93]  Bob L. Sturm Revisiting Priorities: Improving MIR Evaluation Practices , 2016, ISMIR.

[94]  Peter Knees,et al.  On Rhythm and General Music Similarity , 2009, ISMIR.

[95]  Bob L. Sturm,et al.  Local Interpretable Model-Agnostic Explanations for Music Content Analysis , 2017, ISMIR.

[96]  Gene Weltfish,et al.  Theory and Practice: Essays presented to Gene Weltfish , 1980 .

[97]  Thierry Bertin-Mahieux,et al.  Large-Scale Cover Song Recognition Using the 2D Fourier Transform Magnitude , 2012, ISMIR.

[98]  John Baily,et al.  Introduction: Music and Migration , 2006 .

[99]  Xavier Serra,et al.  Designing efficient architectures for modeling temporal features with convolutional neural networks , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[100]  W. Bas de Haas,et al.  A Corpus-Based Study on Ragtime Syncopation , 2013, ISMIR.

[101]  Juan Pablo Bello,et al.  From Genre Classification to Rhythm Similarity: Computational and Musicological Insights , 2015 .

[102]  Martyn Hammersley,et al.  Ethnography: problems and prospects , 2005 .

[103]  Geraint A. Wiggins Semantic Gap?? Schemantic Schmap!! Methodological Considerations in the Scientific Study of Music , 2009, 2009 11th IEEE International Symposium on Multimedia.

[104]  Marc Leman,et al.  Content-Based Music Information Retrieval: Current Directions and Future Challenges , 2008, Proceedings of the IEEE.

[105]  Frans Wiering,et al.  Unfolding the potential of computational musicology , 2011, ICISO 2011.

[106]  A. Lomax,et al.  Factors of Musical Style , 1980 .

[107]  Simon Dixon,et al.  Intonation in unaccompanied singing: accuracy, drift, and a model of reference pitch memory. , 2014, The Journal of the Acoustical Society of America.

[108]  Matija Marolt Probabilistic Segmentation and Labeling of Ethnomusicological Field Recordings , 2009, ISMIR.

[109]  Juhan Nam,et al.  Learning Sparse Feature Representations for Music Annotation and Retrieval , 2012, ISMIR.

[110]  Seungjin Choi,et al.  Semi-Supervised Nonnegative Matrix Factorization , 2010, IEEE Signal Processing Letters.

[111]  P. H. Lindsay,et al.  Human Information Processing: An Introduction to Psychology , 1972 .

[112]  David Huron,et al.  Mapping european folksong: feographical localization of musical features , 2001 .

[113]  Ajay Srinivasamurthy,et al.  In Search of Automatic Rhythm Analysis Methods for Turkish and Indian Art Music , 2014 .

[114]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[115]  Mark B. Sandler,et al.  The Music Ontology , 2007, ISMIR.

[116]  Jayme Garcia Arnal Barbedo,et al.  Automatic Musical Genre Classification Using a Flexible Approach , 2008 .

[117]  Chang-Tien Lu,et al.  On Detecting Spatial Outliers , 2008, GeoInformatica.

[118]  A. Gustar,et al.  Statistics in Historical Musicology , 2014 .

[119]  Remco C. Veltkamp,et al.  Cognition-inspired Descriptors for Scalable Cover Song Retrieval , 2014, ISMIR.

[120]  Godfried T. Toussaint,et al.  Classification and Phylogenetic Analysis of African Ternary Rhythm Timelines , 2003 .

[121]  Patrick E. Savage,et al.  Toward a new comparative musicology , 2013 .

[122]  Jordi Bonada,et al.  Vibrato Extraction and Parameterization in the Spectral Modeling Synthesis framework , 1998 .

[123]  Jan Philip Schinhan,et al.  The Traditional Tunes of the Child Ballads: With Their Texts, According to the Extant Records of Great Britain and America , 1959 .

[124]  Zoltán Juhász,et al.  A systematic comparison of different European folk music traditions using self-organizing maps , 2006 .

[125]  Sebastian Ewert,et al.  The Audio Degradation Toolbox and Its Application to Robustness Evaluation , 2013, ISMIR.

[126]  Steven Brown,et al.  Mapping Music: Cluster Analysis Of Song-Type Frequencies Within And Between Cultures , 2014 .

[127]  Parag Chordia,et al.  Raag Recognition Using Pitch-Class and Pitch-Class Dyad Distributions , 2007, ISMIR.

[128]  M. Clayton,et al.  Music and Mediation Toward a New Sociology of Music chapter 22 part IV , in The Cultural Study of Music : A Critical Introduction , 2013 .

[129]  S. Trehub,et al.  Cross-cultural convergence of musical features , 2015, Proceedings of the National Academy of Sciences.

[130]  Baris Bozkurt,et al.  An Automatic Pitch Analysis Method for Turkish Maqam Music , 2008 .

[131]  P. Filzmoser A MULTIVARIATE OUTLIER DETECTION METHOD , 2004 .

[132]  Markus Schedl,et al.  Local and global scaling reduce hubs in space , 2012, J. Mach. Learn. Res..

[133]  Anja Volk,et al.  Melodic similarity among folk songs: An annotation study on similarity-based categorization in music , 2012 .

[134]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[135]  Zoltán Juhász,et al.  A comparative phylogenetic study of genetics and folk music , 2012, Molecular Genetics and Genomics.

[136]  Wolfgang Hess,et al.  Pitch Determination of Speech Signals: Algorithms and Devices , 1983 .

[137]  Matija Marolt,et al.  A Mid-Level Representation for Melody-Based Retrieval in Audio Collections , 2008, IEEE Transactions on Multimedia.

[138]  Yannis Stylianou,et al.  Rhythmic Similarity in Traditional Turkish Music , 2009, ISMIR.

[139]  P. Bohlman,et al.  World Music: A Very Short Introduction , 2002 .

[140]  Yannis Stylianou,et al.  Scale Transform in Rhythmic Similarity of Music , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[141]  Thomas E. Currie,et al.  How ‘Circumpolar’ is Ainu Music? Musical and Genetic Perspectives on the History of the Japanese Archipelago , 2015 .

[142]  Emilia Gómez,et al.  Comparative Melodic Analysis of A Cappella Flamenco Cantes , 2008 .

[143]  Tijl De Bie,et al.  An End-to-End Machine Learning System for Harmonic Analysis of Music , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[144]  Jinyan Li,et al.  Efficient mining of emerging patterns: discovering trends and differences , 1999, KDD '99.

[145]  Xavier Serra,et al.  What is the Effect of Audio Quality on the Robustness of MFCCs and Chroma Features? , 2014, ISMIR.

[146]  Liang Sun,et al.  Multi-Label Dimensionality Reduction , 2013 .

[147]  Richard F. Lyon,et al.  The Intervalgram: An Audio Feature for Large-scale Melody Recognition , 2012 .

[148]  Thomas E. Currie,et al.  Statistical universals reveal the structures and functions of human music , 2015, Proceedings of the National Academy of Sciences.

[149]  Xavier Serra,et al.  Creating Research Corpora for the Computational Study of Music: the case of the CompMusic Project , 2014, Semantic Audio.

[150]  Frank A. Dubinskas,et al.  A musical Joseph's coat: Patchwork patterns and social significance in world musics , 1983 .

[151]  Thomas Grill,et al.  Exploring Data Augmentation for Improved Singing Voice Detection with Neural Networks , 2015, ISMIR.

[152]  Benjamin Schrauwen,et al.  Transfer Learning by Supervised Pre-training for Audio-based Music Classification , 2014, ISMIR.

[153]  David Locke,et al.  Cantometrics: An Approach to the Anthropology of Music , 1981 .

[154]  Luke Windsor,et al.  Computational Modeling of Music Cognition: Problem or Solution? , 1998 .

[155]  Daniel P. W. Ellis,et al.  Signal Processing for Music Analysis , 2011, IEEE Journal of Selected Topics in Signal Processing.

[156]  Bob L. Sturm A Simple Method to Determine if a Music Information Retrieval System is a “Horse” , 2014, IEEE Transactions on Multimedia.

[157]  Jan Schlüter,et al.  Learning to Pinpoint Singing Voice from Weakly Labeled Examples , 2016, ISMIR.

[158]  Fang Zhou,et al.  Predicting the Geographical Origin of Music , 2014, 2014 IEEE International Conference on Data Mining.

[159]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[160]  Xavier Serra,et al.  Multi-Label Music Genre Classification from Audio, Text and Images Using Deep Features , 2017, ISMIR.

[161]  Emily Merritt,et al.  CantoCore: A new cross-cultural song classification scheme , 2012 .

[162]  Jay Rahn,et al.  What is Folk Music , 1988 .

[163]  Yann LeCun,et al.  Feature learning and deep architectures: new directions for music informatics , 2013, Journal of Intelligent Information Systems.

[164]  W. Rhodes The Use of the Computer in the Classification of Folk Tunes , 1965 .

[165]  Xavier Serra,et al.  Roadmap for Music Information ReSearch , 2013 .

[166]  Charu C. Aggarwal,et al.  On k-Anonymity and the Curse of Dimensionality , 2005, VLDB.

[167]  Zoltán Juhász,et al.  Automatic Segmentation and Comparative Study of Motives in Eleven Folk Song Collections using Self-Organizing Maps and Multidimensional Mapping , 2009 .

[168]  B. Bronson Mechanical Help in the Study of Folk Song , 1949 .

[169]  Bronia Kornhauser,et al.  Classification of musical instruments , 2015 .

[170]  Gerhard Widmer,et al.  Towards Characterisation of Music via Rhythmic Patterns , 2004, ISMIR.

[171]  Gregory H. Wakefield,et al.  Audio thumbnailing of popular music using chroma-based representations , 2005, IEEE Transactions on Multimedia.

[172]  Ichiro Fujinaga,et al.  An Expert Ground Truth Set for Audio Chord Recognition and Music Analysis , 2011, ISMIR.

[173]  Daphna Weinshall,et al.  Modeling Musical Influence with Topic Models , 2013, ICML.

[174]  Jakob Abeßer,et al.  Automatic Classification of Musical Pieces into Global Cultural Areas , 2011, Semantic Audio.

[175]  Niels Bogaards,et al.  A model for rhythm and timbre similarity in electronic dance music , 2017 .

[176]  Bruno Nettl,et al.  Comparative musicology and anthropology of music : essays on the history of ethnomusicology , 1991 .

[177]  Benjamin Schrauwen,et al.  End-to-end learning for music audio , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[178]  Nigel Nettheim,et al.  A bibliography of statistical applications in musicology , 1997 .

[179]  Pierre Hanna,et al.  AUTOMATIC TIMBRE CLASSIFICATION OF ETHNOMUSICOLOGICAL AUDIO RECORDINGS , 2014 .

[180]  Gerhard Widmer,et al.  Improving tempo-sensitive and tempo-robust descriptors for rhythmic similarity , 2011 .

[181]  Mert Bay,et al.  The Music Information Retrieval Evaluation eXchange: Some Observations and Insights , 2010, Advances in Music Information Retrieval.

[182]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[183]  Ichiro Fujinaga,et al.  Compositional Data Analysis of Harmonic Structures in Popular Music , 2013, MCM.

[184]  Emilia Gómez,et al.  Supplementary Graphs: Sinusoid Extraction and Salience Function Design for Predominant Melody Estimation , 2011 .

[185]  Emilia Gómez,et al.  Computational Models for Perceived Melodic Similarity in A Cappella Flamenco Singing , 2014, ISMIR.

[186]  Simon Dixon,et al.  Learning a Feature Space for Similarity in World Music , 2016, ISMIR.

[187]  Ricarda Franzen Europeana Sounds: an interface into European sound archives , 2016 .

[188]  Juan Pablo Bello,et al.  A Software Framework for Musical Data Augmentation , 2015, ISMIR.

[189]  Peter Filzmoser,et al.  Outlier identification in high dimensions , 2008, Comput. Stat. Data Anal..

[190]  Slim Essid,et al.  Melody Extraction by Contour Classification , 2015, ISMIR.

[191]  Malcolm Slaney,et al.  Construction and evaluation of a robust multifeature speech/music discriminator , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[192]  Xavier Serra,et al.  Dunya: a system for browsing audio music collections exploiting cultural context , 2013, ISMIR 2013.

[193]  David Temperley,et al.  Introduction to the Special Issues on Corpus Methods , 2013 .

[194]  Catherine J. Stevens,et al.  Music Perception and Cognition: A Review of Recent Cross-Cultural Research , 2012, Top. Cogn. Sci..

[195]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[196]  Mert Bay,et al.  Evaluation of Multiple-F0 Estimation and Tracking Systems , 2009, ISMIR.

[197]  Xavier Serra A Multicultural Approach in Music Information Research , 2011, ISMIR.

[198]  Philip S. Yu,et al.  Outlier detection for high dimensional data , 2001, SIGMOD '01.

[199]  Marc Leman,et al.  Exploring African Tone Scales , 2009, ISMIR.

[200]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[201]  Xavier Serra,et al.  Assessing the Tuning of Sung Indian Classical Music , 2011, ISMIR.

[202]  Perfecto Herrera,et al.  Computational Ethnomusicology: perspectives and challenges , 2013 .

[203]  Mark Sandler,et al.  Convolutional recurrent neural networks for music classification , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[204]  E. B. Newman,et al.  A Scale for the Measurement of the Psychological Magnitude Pitch , 1937 .

[205]  Daniel Wolff,et al.  Adapting Metrics for Music Similarity Using Comparative Ratings , 2011, ISMIR.

[206]  Simon Dixon,et al.  Towards the characterization of singing styles in world music , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[207]  Daniel Wolff,et al.  The Digital Music Lab , 2017 .

[208]  B. Bronson Some Observations about Melodic Variation in British-American Folk Tunes , 1950 .