Incremental Integration of Global Contours through Interplay between Visual Cortical Areas

The traditional view on visual processing emphasizes a hierarchy: local line segments are first linked into global contours, which in turn are assembled into more complex forms. Distinct from this bottom-up viewpoint, here we provide evidence for a theoretical framework whereby objects and their parts are processed almost concurrently in a bidirectional cortico-cortical loop. By simultaneous recordings from V1 and V4 in awake monkeys, we found that information about global contours in a cluttered background emerged initially in V4, started ∼40 ms later in V1, and continued to develop in parallel in both areas. Detailed analysis of neuronal response properties implicated contour integration to emerge from both bottom-up and reentrant processes. Our results point to an incremental integration mechanism: feedforward assembling accompanied by feedback disambiguating to define and enhance the global contours and to suppress background noise. The consequence is a parallel accumulation of contour information over multiple cortical areas.

[1]  C. Gilbert,et al.  Contour Saliency in Primary Visual Cortex , 2006, Neuron.

[2]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[3]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[4]  S. Ullman Visual routines , 1984, Cognition.

[5]  Rüdiger von der Heydt,et al.  The speed of context integration in the visual cortex. , 2011, Journal of neurophysiology.

[6]  G. Reeke,et al.  Network model of top-down influences on local gain and contextual interactions in visual cortex , 2013, Proceedings of the National Academy of Sciences.

[7]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[8]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[9]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[11]  Gustavo Deco,et al.  Interactions between higher and lower visual areas improve shape selectivity of higher level neurons—Explaining crowding phenomena , 2007, Brain Research.

[12]  H. Neumann,et al.  The Role of Attention in Figure-Ground Segregation in Areas V1 and V4 of the Visual Cortex , 2012, Neuron.

[13]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[14]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[15]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[16]  G. DeAngelis,et al.  Does Neuronal Synchrony Underlie Visual Feature Grouping? , 2005, Neuron.

[17]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[18]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[19]  S. Maier,et al.  Widespread Periodic Intrinsic Connections in the Tree Shrew Visual Cortex , 2005 .

[20]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[21]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[22]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[23]  Wu Li,et al.  Adaptive shape processing in primary visual cortex , 2011, Proceedings of the National Academy of Sciences.

[24]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[25]  Roman Bauer,et al.  Contour integration in striate cortex , 2002, Experimental Brain Research.

[26]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[27]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[28]  Pieter R. Roelfsema,et al.  The Representation of Erroneously Perceived Stimuli in the Primary Visual Cortex , 2001, Neuron.

[29]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[30]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[31]  Mauro Ursino,et al.  A model of contextual interactions and contour detection in primary visual cortex , 2004, Neural Networks.

[32]  R. von der Heydt,et al.  Analysis of the Context Integration Mechanisms Underlying Figure–Ground Organization in the Visual Cortex , 2010, The Journal of Neuroscience.

[33]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[34]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[35]  P. H. Schiller Effect of lesions in visual cortical area V4 on the recognition of transformed objects , 1995, Nature.

[36]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[37]  Shimon Ullman,et al.  Image interpretation by a single bottom-up top-down cycle , 2008, Proceedings of the National Academy of Sciences.

[38]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[39]  R. von der Heydt,et al.  Synchrony and the binding problem in macaque visual cortex. , 2008, Journal of vision.

[40]  Roelfsema Pieter Cortical algorithms for perceptual grouping , 2008 .

[41]  Victor A. F. Lamme,et al.  Synchrony and covariation of firing rates in the primary visual cortex during contour grouping , 2004, Nature Neuroscience.

[42]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Roman Bauer,et al.  Contour integration in striate cortex. Classic cell responses or cooperative selection? , 2002, Experimental brain research.

[44]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[45]  M. Koivisto,et al.  Recurrent Processing in V1/V2 Contributes to Categorization of Natural Scenes , 2011, The Journal of Neuroscience.

[46]  Hamutal Slovin,et al.  Population Responses to Contour Integration: Early Encoding of Discrete Elements and Late Perceptual Grouping , 2013, Neuron.

[47]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[48]  Bernice W. Polemis Nonparametric Statistics for the Behavioral Sciences , 1959 .

[49]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.