The effect of saturation on belief propagation decoding of LDPC codes

We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analysis and the stability of density evolution. We analyze the decoder for certain low-density parity-check code ensembles and show that belief propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly affected by saturation and the asymptotic qualitative effect of saturation is similar to reduction of variable node degree by one.

[1]  A. Robert Calderbank,et al.  On the capacity of the discrete-time channel with uniform output quantization , 2009, 2009 IEEE International Symposium on Information Theory.

[2]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[3]  Rüdiger L. Urbanke,et al.  Spatially Coupled Ensembles Universally Achieve Capacity Under Belief Propagation , 2013, IEEE Trans. Inf. Theory.

[4]  Paul H. Siegel,et al.  Error floor approximation for LDPC codes in the AWGN channel , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  C. Villani The founding fathers of optimal transport , 2009 .

[6]  N. Kanistras,et al.  Impact of LLR saturation and quantization on LDPC min-sum decoders , 2010, 2010 IEEE Workshop On Signal Processing Systems.

[7]  Richard D. Wesel,et al.  Soft Information for LDPC Decoding in Flash: Mutual-Information Optimized Quantization , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[8]  Shuai Zhang,et al.  On the dynamics of the error floor behavior in regular LDPC codes , 2009 .

[9]  Vassilis Paliouras,et al.  Propagation of LLR Saturation and Quantization Error in LDPC Min-Sum Iterative Decoding , 2012, 2012 IEEE Workshop on Signal Processing Systems.

[10]  Shuai Zhang,et al.  Controlling the Error Floor in LDPC Decoding , 2012, IEEE Transactions on Communications.

[11]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[12]  Paul H. Siegel,et al.  Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes , 2012, IEEE Transactions on Communications.

[13]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[14]  Xiaojie Zhang,et al.  Will the real error floor please stand up? , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[15]  Rüdiger L. Urbanke,et al.  Degree Optimization and Stability Condition for the Min-Sum Decoder , 2007, 2007 IEEE Information Theory Workshop.

[16]  Shashi Kiran Chilappagari,et al.  Failures and Error Floors of Iterative Decoders , 2014 .

[17]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[18]  Paul H. Siegel,et al.  Error Floor Approximation for LDPC Codes in the AWGN Channel , 2014, IEEE Trans. Inf. Theory.

[19]  Shuai Zhang,et al.  On the dynamics of the error floor behavior in regular LDPC codes , 2009, 2009 IEEE Information Theory Workshop.

[20]  C. Villani Optimal Transport: Old and New , 2008 .