Approximation of Sets Based on Partial Covering

In classic Pawlakian rough set theory the sets used to approximations are equivalence classes which are pairwise disjoint and cover the universe. In this article we give up not only the pairwise disjoint property but also the covering of the universe. After a historical and philosophical background, we define a general set theoretic approximation framework. First, we reconstruct the rough set theory and partly restate its some well---known facts in the language of this framework. Next, we present a special approximation scheme. It is based on the partial covering of the universe which is called the base system and denoted by $\mathfrak{B}$ . $\mathfrak{B}$ -definable sets and lower and upper $\mathfrak{B}$ -approximations are straightforward point---free generalizations of Pawlakian ones. We study such notions as single---layered base systems, $\mathfrak{B}$ -representations of $\mathfrak{B}$ -definable sets, and the exactness of sets. It is a well---known fact that the Pawlakian upper and lower approximations form a Galois connection. We clarify which conditions have to be satisfied by the upper and lower $\mathfrak{B}$ -approximations so that they form a (regular) Galois connection. Excluding the cases when the empty set is the upper $\mathfrak{B}$ -approximation of certain nonempty sets gives rise to a partial upper $\mathfrak{B}$ -approximation map. We also clear up that a partial upper $\mathfrak{B}$ -approximation map and a total lower $\mathfrak{B}$ -approximation map form a partial Galois connection. In order to demonstrate the effectiveness of our approach we present three real---life examples in the last section.

[1]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[2]  A. Skowron,et al.  On topology in information systems , 1988 .

[3]  Helena Rasiowa,et al.  Rough concepts logic , 1984, Symposium on Computation Theory.

[4]  Tsau Young Lin Update and Illustration on Granular Computing: Practices, Theory and Future Directions , 2010, 2010 IEEE International Conference on Granular Computing.

[5]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1987, IEEE Transactions on Software Engineering.

[6]  D. Dubois,et al.  An introduction to bipolar representations of information and preference , 2008 .

[7]  Hung Son Nguyen,et al.  Approximate Boolean Reasoning: Foundations and Applications in Data Mining , 2006, Trans. Rough Sets.

[8]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[9]  Ferenc Horváth,et al.  Fact sheet of the MÉTA database 1.2 , 2008 .

[10]  Zdzisław Pawlak,et al.  Rough sets: a new approach to vagueness , 1992 .

[11]  Qingguo Li,et al.  Reduction about approximation spaces of covering generalized rough sets , 2010, Int. J. Approx. Reason..

[12]  G. Grätzer General Lattice Theory , 1978 .

[13]  Dimiter Vakarelov,et al.  A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems , 2005, RSFDGrC.

[14]  Yavor Nenov,et al.  Modal logics for mereotopological relations , 2008, Advances in Modal Logic.

[15]  Yiyu Yao,et al.  On Generalizing Pawlak Approximation Operators , 1998, Rough Sets and Current Trends in Computing.

[16]  Ivo Düntsch,et al.  Approximation Operators in Qualitative Data Analysis , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[17]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[18]  J. Meseguer,et al.  Security Policies and Security Models , 1982, 1982 IEEE Symposium on Security and Privacy.

[19]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[20]  Andrzej Skowron,et al.  Information granules: Towards foundations of granular computing , 2001 .

[21]  Guoyin Wang,et al.  Rough Set Based Solutions for Network Security , 2004, MSRAS.

[22]  Jari Kortelainen,et al.  Modal-Like Operators in Boolean Lattices, Galois Connections and Fixed Points , 2007, Fundam. Informaticae.

[23]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[24]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[25]  Tamás Mihálydeák,et al.  General Tool-Based Approximation Framework Based on Partial Approximation of Sets , 2011, RSFDGrC.

[26]  Marcel Erné,et al.  A Primer on Galois Connections , 1993 .

[27]  Zdzislaw Pawlak,et al.  Some Issues on Rough Sets , 2004, Trans. Rough Sets.

[28]  S. Marcus Tolerance rough sets, Čech topologies, learning processes , 1994 .

[29]  Achille C. Varzi Cut-offs and their Neighbors , 2003 .

[30]  Zoltán Csajbók,et al.  Simultaneous Anomaly and Misuse Intrusion Detections Based on Partial Approximative Set Theory , 2011, 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing.

[31]  Andrzej Skowron,et al.  List of Works by Professor Zdzisław Pawlak (1926-2006) , 2013, Rough Sets and Intelligent Systems.

[32]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[33]  Andrzej Skowron,et al.  Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data , 2012, Intelligent Systems Reference Library.

[34]  Yiyu Yao,et al.  Comparison of Rough-Set and Interval-Set Models for Uncertain Reasoning , 1996, Fundam. Informaticae.

[35]  Shusaku Tsumoto,et al.  Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence , 2013, Rough Sets and Intelligent Systems.

[36]  J. A. Pomykala SOME REMARKS ON APPROXIMATION , 1991 .

[37]  黄亚明 Lab Tests Online , 2010 .

[38]  W. Caelli,et al.  Information Security Handbook , 1991 .

[39]  Davide Ciucci,et al.  Orthopairs: A Simple and Widely UsedWay to Model Uncertainty , 2011, Fundam. Informaticae.

[40]  Eszter Illyés,et al.  A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING , 2007 .

[41]  P. Odifreddi Classical recursion theory , 1989 .

[42]  Andrzej Skowron,et al.  Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam - Volume 1 , 2013, Rough Sets and Intelligent Systems.

[43]  Matt Bishop,et al.  Computer Security: Art and Science , 2002 .

[44]  Andrzej Skowron,et al.  Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam - Volume 2 , 2013, Rough Sets and Intelligent Systems.

[45]  Didier Dubois,et al.  An information-based discussion of vagueness , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[46]  Andrzej Skowron,et al.  Rough Sets: From Rudiments to Challenges , 2013, Rough Sets and Intelligent Systems.

[47]  Zoltán Ernő Csajbók,et al.  Partial Approximative Set Theory: A View from Galois Connections , 2010 .

[48]  Davide Ciucci,et al.  Approximation Algebra and Framework , 2009, Fundam. Informaticae.

[49]  Hung Son Nguyen,et al.  A View on Rough Set Concept Approximations , 2003, Fundam. Informaticae.

[50]  Raphael C.-W. Phan Review of Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd Edition by Ross J. Anderson , 2009, Cryptologia.

[51]  Andrzej Skowron,et al.  Approximation Spaces and Information Granulation , 2004, Trans. Rough Sets.

[52]  Ross J. Anderson Security engineering - a guide to building dependable distributed systems (2. ed.) , 2001 .

[53]  Z. Molnár,et al.  Threatening factors encountered: Actual endangerment of the Hungarian (semi-)natural habitats , 2008 .

[54]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[55]  Kenneth Revett,et al.  Feature selection in Parkinson's disease: A rough sets approach , 2009, 2009 International Multiconference on Computer Science and Information Technology.

[56]  Salvatore Greco,et al.  Fuzzy Similarity Relation as a Basis for Rough Approximations , 1998, Rough Sets and Current Trends in Computing.

[57]  Rachid Beghdad Modelling and solving the intrusion detection problem in computer networks , 2004, Comput. Secur..

[58]  Jouni Järvinen Properties of Rough Approximations , 2005, J. Adv. Comput. Intell. Intell. Informatics.

[59]  Yiyu Yao,et al.  Rough Set Approximations in Formal Concept Analysis and Knowledge Spaces , 2008, ISMIS.

[60]  Klaus Denecke,et al.  Galois connections and applications , 2004 .

[61]  Tsau Young Lin,et al.  Granular Computing: Practices, Theories, and Future Directions , 2009, Encyclopedia of Complexity and Systems Science.

[62]  Ping Zhu,et al.  Covering rough sets based on neighborhoods: An approach without using neighborhoods , 2009, Int. J. Approx. Reason..

[63]  Arto Salomaa,et al.  Computation and Automata , 1984 .

[64]  Ewa Orlowska,et al.  Algebraic Aspects of the Relational Knowledge Representation: Modal Relation Algebras , 1992, Nonclassical Logics and Information Processing.

[65]  Tsau Young Lin Approximation Theories: Granular Computing vs Rough Sets , 2008, RSCTC.

[66]  Jouni Järvinen Pawlak's Information Systems in Terms of Galois Connections and Functional Dependencies , 2007, Fundam. Informaticae.

[67]  Zdzislaw Pawlak,et al.  Vagueness - a Rough Set View , 1997, Structures in Logic and Computer Science.

[68]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[69]  Zoltán Csajbók,et al.  A security model for personal information security management based on partial approximative set theory , 2010, Proceedings of the International Multiconference on Computer Science and Information Technology.

[70]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[71]  Zoltán Csajbók,et al.  Partial approximative set theory: A generalization of the rough set theory , 2010, 2010 International Conference of Soft Computing and Pattern Recognition.

[72]  Zoltán Botta-Dukát,et al.  A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA) , 2007, Folia Geobotanica.

[73]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[74]  William Zhu,et al.  Topological approaches to covering rough sets , 2007, Inf. Sci..

[75]  Jouni Järvinen,et al.  Rough Sets Determined by Quasiorders , 2008, Order.

[76]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[77]  Yiyu Yao,et al.  On Generalizing Rough Set Theory , 2003, RSFDGrC.

[78]  Y. Yao Information granulation and rough set approximation , 2001 .

[79]  Kenneth Revett,et al.  Machine learning in electrocardiogram diagnosis , 2009, 2009 International Multiconference on Computer Science and Information Technology.

[80]  Fei-Yue Wang,et al.  Reduction and axiomization of covering generalized rough sets , 2003, Inf. Sci..

[81]  Yiyu Yao,et al.  Covering based rough set approximations , 2012, Inf. Sci..

[82]  Peter F. Smith,et al.  Vagueness: A Reader , 1999 .

[83]  Zoltán Ernő Csajbók On the partial approximation of sets , 2011 .

[84]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[85]  Mihir K. Chakraborty,et al.  A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns , 2008 .

[86]  Dimiter Vakarelov,et al.  A Modal Logic for Pawlak's Approximation Spaces with Rough Cardinality n , 2008, Fundam. Informaticae.

[87]  Xiangliang Zhang,et al.  Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data , 2006, Comput. Secur..

[88]  Lotfi A. Zadeh Granular Computing and Rough Set Theory , 2007, RSEISP.

[89]  R. Keefe Theories of vagueness , 2000 .

[90]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[91]  Fred B. Schneider,et al.  Enforceable security policies , 2000, TSEC.

[92]  Davide Ciucci,et al.  A Unifying Abstract Approach for Rough Models , 2008, RSKT.

[93]  Andrzej Skowron,et al.  Approximation logic , 1985, Mathematical Methods of Specification and Synthesis of Software Systems.

[94]  William Zhu,et al.  Relationship between generalized rough sets based on binary relation and covering , 2009, Inf. Sci..

[95]  Peter F. Stadler,et al.  Genotype-Phenotype Maps , 2006 .

[96]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[97]  Urszula Wybraniec-Skardowska,et al.  Extensions and Intentions in the Ruogh Set Theory , 1998, Inf. Sci..

[98]  Yiyu Yao,et al.  Rough set approximations in formal concept analysis , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[99]  Andrzej Bargiela,et al.  The roots of granular computing , 2006, 2006 IEEE International Conference on Granular Computing.

[100]  Zoltán Csajbók,et al.  Approximation of Sets Based on Partial Covering , 2011, Trans. Rough Sets.

[101]  Andrzej Skowron,et al.  Rough Sets and Vague Concepts , 2004, Fundam. Informaticae.

[102]  A. Miné Weakly Relational Numerical Abstract Domains , 2004 .

[103]  Jouni Järvinen,et al.  Lattice Theory for Rough Sets , 2007, Trans. Rough Sets.

[104]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[105]  P. Odifreddi The theory of functions and sets of natural numbers , 1989 .