Penalty methods for finding eigenvalues of continuous systems: Emerging challenges and opportunities

The use of negative penalty parameters such as elastic stiffness or mass to enforce constraints has been the subject of several recent papers. These developments began with an article in which rigid supports and connections were modelled by springs of large negative stiffness. This brief review paper discusses the history behind these developments and some emerging challenges and opportunities.

[1]  D. J. Gorman Accurate free vibration analysis of rhombic plates with simply-supported and fully-clamped edge conditions , 1988 .

[2]  Marta B. Rosales,et al.  CLAMPED PLATES CONSIDERED AS THREE-DIMENSIONAL SOLIDS: A METHOD TO FIND ARBITRARY PRECISION FREQUENCIES , 2001 .

[3]  H. Askes,et al.  Penalty methods for time domain computational dynamics based on positive and negative inertia , 2009 .

[4]  Harm Askes,et al.  The use of negative penalty functions in linear systems of equations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  George D. Manolis,et al.  Imposition of time-dependent boundary conditions in FEM formulations for elastodynamics: critical assessment of penalty-type methods , 2009 .

[6]  J. Kelly Connecting Qtls to the G-Matrix of Evolutionary Quantitative Genetics , 2009, Evolution; international journal of organic evolution.

[7]  Marco Amabili,et al.  A TECHNIQUE FOR THE SYSTEMATIC CHOICE OF ADMISSIBLE FUNCTIONS IN THE RAYLEIGH–RITZ METHOD , 1999 .

[8]  R. M. Natal Jorge,et al.  New enhanced strain elements for incompressible problems , 1999 .

[9]  Tiao Zhou,et al.  JEDEC board drop test simulation for wafer level packages (WLPs) , 2009, 2009 59th Electronic Components and Technology Conference.

[10]  Monterrubio Salazar,et al.  The use of positive and negative penalty functions in solving constrained optimization problems and partial differential equations , 2009 .

[11]  Sinniah Ilanko,et al.  Introducing the use of positive and negative inertial functions in asymptotic modelling , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  D. J. Gorman Free vibration analysis of the completely free rectangular plate by the method of superposition , 1978 .

[13]  Marta B. Rosales,et al.  Arbitrary precision frequencies of a free rectangular thin plate , 2000 .

[14]  Edwin K. P. Chong,et al.  An Introduction to Optimization: Chong/An Introduction , 2008 .

[15]  Mark Embree,et al.  The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem , 2006 .

[16]  A. S. Veletsos,et al.  Natural Frequencies of Continuous Flexural Members , 1957 .

[17]  S. M. Dickinson,et al.  The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, part I: Theoretical approach , 1987 .

[18]  S. M. Dickinson,et al.  ASYMPTOTIC MODELLING OF RIGID BOUNDARIES AND CONNECTIONS IN THE RAYLEIGH–RITZ METHOD , 1999 .

[19]  S. Suryanarayan,et al.  The use of flexibility functions with negative domains in the vibration analysis of asymmetrically point-supported rectangular plates , 1988 .

[20]  Andrew Y. T. Leung,et al.  Dynamic Stiffness and Substructures , 1993 .

[21]  W. H. Wittrick,et al.  An automatic computational procedure for calculating natural frequencies of skeletal structures , 1970 .

[22]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[23]  Gui-Rong Liu,et al.  Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods , 2010 .

[24]  Sinniah Ilanko On asymptotic modelling of constraints that do not change the degrees of freedom , 2006 .

[25]  O. C. Zienkiewicz,et al.  Constrained variational principles and penalty function methods in finite element analysis , 1974 .

[26]  Ferenc Izsák,et al.  Optimal Penalty Parameters for Symmetric Discontinuous Galerkin Discretisations of the Time-Harmonic Maxwell Equations , 2010, J. Sci. Comput..

[27]  L E Monterrubio,et al.  Free vibration of shallow shells using the Rayleigh—Ritz method and penalty parameters , 2009 .

[28]  Stefan Paszkowski Evaluation of a C -table , 1992 .

[29]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[30]  S. M. Dickinson,et al.  Corrigendum: The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, part I: Theoretical approach; part II: Experimental investigation (S. Ilanko and S. M. Dickinson 1987 Journal of Sound and Vibration118, 313–351) , 1990 .

[31]  P. Paultre,et al.  Multiple-support seismic analysis of large structures , 1990 .

[32]  J. R. Banerjee,et al.  Aeroelastic optimisation of composite wings using the dynamic stiffness method , 1997, The Aeronautical Journal (1968).

[33]  Antonio Rodríguez-Ferran,et al.  Bipenalty method for time domain computational dynamics , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Sinniah Ilanko,et al.  EXISTENCE OF NATURAL FREQUENCIES OF SYSTEMS WITH ARTIFICIAL RESTRAINTS AND THEIR CONVERGENCE IN ASYMPTOTIC MODELLING , 2002 .

[35]  Biswajit Tripathy,et al.  Vibration and buckling characteristics of weld-bonded rectangular plates using the flexibility function approach , 2008 .

[36]  Naoki Asano A Penalty Function Type of Virtual Work Principle for Impact Contact Problems of Two Bodies , 1986 .

[37]  Frederic Ward Williams,et al.  Wittrick–Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters , 2008 .