Length scale effects in the simulation of deformation properties of nanocrystalline metals

The observed inverse grain size strain rate dependency in Al columnar structures [Acta Mater 49 (2001) 2713] can be explained by a geometrical argument arising when a dislocation traverses the entire grain. The paper addresses also the differences in dislocation activity in a 2D-columnar and a full 3D-nanostructured geometry.

[1]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[2]  H. V. Swygenhoven,et al.  PLASTIC BEHAVIOR OF NANOPHASE METALS STUDIED BY MOLECULAR DYNAMICS , 1998 .

[3]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[4]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[5]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[6]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[7]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[8]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[9]  H. V. Swygenhoven,et al.  Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni , 1999 .

[10]  S. Phillpot,et al.  Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation , 2002 .

[11]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[12]  S. Phillpot,et al.  Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation , 1999 .

[13]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[14]  P. Derlet,et al.  The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation , 2002 .

[15]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[16]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .