Mining knowledge from data using Anticipatory Classifier System

The article demonstrates the capabilities of Anticipatory Classifier System in solving the data mining tasks. It is a first application of anticipatory learning to a real world exploration tasks. The results of experiments with Monk's, Voting-record and WBC problems are shown as well as comparison of these results with other systems is presented. ACS handles these tasks quite well even though it is designed for a different kind of problems.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[3]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[4]  D. Goldberg,et al.  New Challenges for an Anticipatory Classiier System: Hard Problems and Possible Solutions New Challenges for an Anticipatory Classiier System: Hard Problems and Possible Solutions , 2007 .

[5]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[6]  Larry Bull,et al.  Learning Classifier Systems , 2002, Annual Conference on Genetic and Evolutionary Computation.

[7]  Wolfgang Stolzmann,et al.  An Introduction to Anticipatory Classifier Systems , 1999, Learning Classifier Systems.

[8]  Wolfgang Stolzmann Antizipative classifier systems , 1997 .

[9]  Sandip Sen,et al.  Newboole: A Fast GBML System , 1990, ML.

[10]  J. Doyne Farmer,et al.  A Rosetta stone for connectionism , 1990 .

[11]  Stewart W. Wilson Get Real! XCS with Continuous-Valued Inputs , 1999, Learning Classifier Systems.

[12]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[13]  Sebastian Thrun,et al.  The MONK''s Problems-A Performance Comparison of Different Learning Algorithms, CMU-CS-91-197, Sch , 1991 .

[14]  Xavier Llorà,et al.  Data Mining using Learning Classifier Systems , 2004 .

[15]  Larry Bull,et al.  Applications of Learning Classifier Systems , 2004 .

[16]  Olgierd Unold,et al.  GCS with Real-Valued Input , 2007, IWINAC.

[17]  Martin V. Butz,et al.  An algorithmic description of XCS , 2000, Soft Comput..

[18]  Martin V. Butz,et al.  Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System - Part 1: Theoretical approach , 2000, GECCO.

[19]  A. Martin V. Butz,et al.  The anticipatory classifier system and genetic generalization , 2002, Natural Computing.

[20]  Kenneth A. De Jong,et al.  Using genetic algorithms for concept learning , 1993, Machine Learning.

[21]  Luca Lanzi Pier,et al.  Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions , 1999 .

[22]  Stephen F. Smith,et al.  Competition-Based Induction of Decision Models from Examples , 2004, Machine Learning.

[23]  Fernando José Von Zuben,et al.  Mapping Artificial Immune Systems into Learning Classifier Systems , 2002, IWLCS.

[24]  Xavier Llorà,et al.  Knowledge-independent data mining with fine-grained parallel evolutionary algorithms , 2001 .

[25]  N. J. Radcliffe,et al.  GA-MINER: Parallel Data Mining with Hierarchical Genetic Algorithms Final Report , 1995 .

[26]  Stewart W. Wilson Mining Oblique Data with XCS , 2000, IWLCS.

[27]  Pier Luca Lanzi,et al.  Mining interesting knowledge from data with the XCS classifier system , 2001 .

[28]  Sean Saxon,et al.  XCS and the Monk's Problems , 1999, Learning Classifier Systems.

[29]  Martin V. Butz,et al.  An Algorithmic Description of ACS2 , 2001, International Workshop on Learning Classifier Systems.

[30]  Michael B. Morgan Proceedings of the seventh international conference (1990) on Machine learning , 1990 .

[31]  John H. Holmes Discovering Risk of Disease with a Learning Classifier System , 1997, ICGA.

[32]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..