Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme.

C-H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C-H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C-H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst-based on a cytochrome P450 monooxygenase-for the highly enantioselective intermolecular amination of benzylic C-H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C-H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor.

[1]  J. Groves,et al.  Manganese-catalyzed late-stage aliphatic C-H azidation. , 2015, Journal of the American Chemical Society.

[2]  T. Poulos,et al.  The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid , 1997, Nature Structural Biology.

[3]  Nicholas J Turner,et al.  Whole-Cell Biocatalysts for Stereoselective C-H Amination Reactions. , 2016, Angewandte Chemie.

[4]  S. Gellman,et al.  Functionalized nitrogen atom transfer catalyzed by cytochrome P-450 , 1985 .

[5]  K. Miyamoto,et al.  Highly Regioselective Amination of Unactivated Alkanes by Hypervalent Sulfonylimino-λ3-Bromane , 2011, Science.

[6]  H. Davies,et al.  Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion , 2008, Nature.

[7]  H. Davies,et al.  Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C-h aminations. , 2006, Organic letters.

[8]  Andreas Schmid,et al.  Direct Terminal Alkylamino‐Functionalization via Multistep Biocatalysis in One Recombinant Whole‐Cell Catalyst , 2013 .

[9]  S. Vázquez,et al.  Syntheses of Cinacalcet: An Enantiopure Active Pharmaceutical Ingredient (API) , 2016, Synthesis.

[10]  Evelyne de Leuw,et al.  Connecting the dots , 1999, Nature Genetics.

[11]  S. Bell,et al.  P450BM3 (CYP102A1): Connecting the Dots , 2012 .

[12]  T. Betley,et al.  Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates , 2014 .

[13]  Paweł Dydio,et al.  Abiological catalysis by artificial haem proteins containing noble metals in place of iron , 2016, Nature.

[14]  Ritesh Singh,et al.  P450-Catalyzed Intramolecular sp3 C–H Amination with Arylsulfonyl Azide Substrates , 2014, ACS catalysis.

[15]  S. You Asymmetric Functionalization of C-H Bonds , 2015 .

[16]  Thomas R. Ward,et al.  Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation , 2012, Science.

[17]  T. Uchida,et al.  Enantio- and regioselective intermolecular benzylic and allylic C-H bond amination. , 2013, Angewandte Chemie.

[18]  Gheorghe-Doru Roiban,et al.  Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. , 2015, Chemical communications.

[19]  Frances H Arnold,et al.  Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. , 2013, Angewandte Chemie.

[20]  K. Godula,et al.  C-H Bond Functionalization in Complex Organic Synthesis , 2006, Science.

[21]  J. D. Bois,et al.  Metal-catalyzed oxidations of C-H to C-N bonds. , 2010, Topics in current chemistry.

[22]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. , 2012, Trends in biotechnology.

[23]  D. Sherman,et al.  Diversity of P450 enzymes in the biosynthesis of natural products. , 2012, Natural product reports.

[24]  S. Kitagaki,et al.  Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of CH bonds , 2002 .

[25]  Benveniste,et al.  Cytochrome P450 , 1993, Handbook of Experimental Pharmacology.

[26]  T. Katsuki,et al.  Mn(salen)-catalyzed enantioselective CH amination , 2001 .

[27]  Junichiro Yamaguchi,et al.  CH Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals , 2013 .

[28]  S. Kitagaki,et al.  Dirhodium(II) Tetrakis[N‐tetrachlorophthaloyl‐(S)‐tert‐leucinate]: A New Chiral Rh(II) Catalyst for Enantioselective Amidation of C—H Bonds. , 2003 .

[29]  R. Fasan,et al.  Intramolecular C(sp(3))H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. , 2014, Bioorganic & medicinal chemistry.

[30]  Frances H. Arnold,et al.  Enantioselective Enzyme-Catalyzed Aziridination Enabled by Active-Site Evolution of a Cytochrome P450 , 2015, ACS central science.

[31]  Paweł Dydio,et al.  Chemoselective, Enzymatic C-H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor. , 2017, Journal of the American Chemical Society.

[32]  Frances H. Arnold,et al.  A Serine-Substituted P450 Catalyzes Highly Efficient Carbene Transfer to Olefins In Vivo , 2013, Nature chemical biology.

[33]  P. Dauban,et al.  Catalytic C-H amination: the stereoselectivity issue. , 2011, Chemical Society reviews.

[34]  R. Sarpong,et al.  Intramolecular C(sp3)–H amination , 2013 .

[35]  Poonam Srivastava,et al.  Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation , 2015, Nature Communications.

[36]  Frances H Arnold,et al.  Asymmetric Enzymatic Synthesis of Allylic Amines: A Sigmatropic Rearrangement Strategy. , 2016, Angewandte Chemie.

[37]  C. Che,et al.  Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins , 1999 .

[38]  Frances H. Arnold,et al.  Enantioselective Intramolecular C—H Amination Catalyzed by Engineered Cytochrome P450 Enzymes in vitro and in vivo. , 2014 .

[39]  F. Arnold,et al.  Protein stability promotes evolvability. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Junichiro Yamaguchi,et al.  C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. , 2012, Angewandte Chemie.

[41]  J. Hartwig,et al.  Metal-Catalyzed Azidation of Tertiary C–H Bonds Suitable for Late-Stage Functionalization , 2014, Nature.

[42]  M. Reetz,et al.  Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. , 2015, Chemical communications.

[43]  Frances H. Arnold,et al.  Enzyme-Controlled Nitrogen-Atom Transfer Enables Regiodivergent C–H Amination , 2014, Journal of the American Chemical Society.

[44]  J. Hartwig Evolution of C-H Bond Functionalization from Methane to Methodology. , 2016, Journal of the American Chemical Society.

[45]  P. Müller,et al.  Efficient diastereoselective intermolecular rhodium-catalyzed C-H amination. , 2006, Angewandte Chemie.