Abundant interaction solutions of the KP equation

Based on the Hirota bilinear form of the KP equation, five classes of interaction solutions between lumps and line solitons are generated via Maple symbolic computations. Analyticity is automatically guaranteed for the first four classes of interaction solutions and the last fifth class of interaction solutions with the plus sign and can be easily achieved for the last fifth class of interaction solutions with the minus sign by taking special choices of the involved parameters. The presented interaction solutions reduce to the existing lumps while the hyperbolic function disappears.

[1]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Huanhe Dong,et al.  The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[3]  Qiu-Lan Zhao,et al.  Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem , 2015 .

[4]  Kenji Imai,et al.  DROMION AND LUMP SOLUTIONS OF THE ISHIMORI-I EQUATION , 1997 .

[5]  Wenxiu Ma,et al.  Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations , 2011 .

[6]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[7]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations , 2016 .

[8]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[9]  Ismail Aslan Constructing rational and multi‐wave solutions to higher order NEEs via the Exp‐function method , 2011 .

[10]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[11]  P. Caudrey,et al.  Memories of Hirota’s method: application to the reduced Maxwell–Bloch system in the early 1970s† , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  David J. Kaup,et al.  The lump solutions and the Bäcklund transformation for the three‐dimensional three‐wave resonant interaction , 1981 .

[13]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[14]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[15]  Huanhe Dong,et al.  Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation , 2017, Comput. Math. Appl..

[16]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[17]  Wen-Xiu Ma,et al.  A bilinear Bäcklund transformation of a (3+1) -dimensional generalized KP equation , 2012, Appl. Math. Lett..

[18]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[19]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[20]  Wenxiu Ma,et al.  Trilinear equations, Bell polynomials, and resonant solutions , 2013 .

[21]  W. Ma Generalized Bilinear Differential Equations , 2012 .

[22]  Jingyuan Yang,et al.  Lump solutions to the BKP equation by symbolic computation , 2016 .

[23]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[24]  Abdul-Majid Wazwaz,et al.  New solutions of distinct physical structures to high-dimensional nonlinear evolution equations , 2008, Appl. Math. Comput..

[25]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[26]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[27]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[28]  Wen-Xiu Ma,et al.  A Study on Rational Solutions to a KP-like Equation , 2015 .

[29]  Abdul-Majid Wazwaz,et al.  New (3$$\varvec{+}$$+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions , 2017 .

[30]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[31]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[33]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[34]  Bao-Zhu Zhao,et al.  Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions , 2015, Appl. Math. Lett..

[35]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[36]  Pierre Gaillard,et al.  Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves , 2016 .

[37]  J. Nimmo,et al.  Lump solutions of the BKP equation , 1990 .

[38]  Wen-Xiu Ma,et al.  Wronskian solutions to integrable equations , 2009 .