Reactor design for the enzymatic isomerization of glucose to fructose

A comprehensive methodology is presented for the design of reactors using immobilized enzymes as catalysts. The design is based on material balances and rate equations for enzyme action and decay and considers the effect of mass transfer limitations on the expression of enzyme activity. The enzymatic isomerization of glucose into fructose with a commercial immobilized glucose isomerase was selected as a case study. Results obtained are consistent with data obtained from existing high-fructose syrup plants. The methodology may be extended to other cases, provided sound expressions for enzyme action and decay are available and a simple flow pattern within the reactor might be assumed.