Ontogenesis of Myocardial Function

[1]  A. Navis,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[2]  D. Sedmera Function and form in the developing cardiovascular system. , 2011, Cardiovascular research.

[3]  H. Brismar,et al.  Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy , 2011, BMC Neuroscience.

[4]  Michael W. Jenkins,et al.  Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. , 2011, American journal of physiology. Heart and circulatory physiology.

[5]  Robert H. Anderson,et al.  Developmental Origin, Growth, and Three-Dimensional Architecture of the Atrioventricular Conduction Axis of the Mouse Heart , 2010, Circulation research.

[6]  Lubo Zhang,et al.  Chronic Prenatal Hypoxia Induces Epigenetic Programming of PKCϵ Gene Repression in Rat Hearts , 2010, Circulation research.

[7]  Fuhua Chen,et al.  Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[8]  David Sedmera,et al.  Effects of mechanical loading on early conduction system differentiation in the chick. , 2010, American journal of physiology. Heart and circulatory physiology.

[9]  M. Fialová,et al.  Neonatal cardiac mitochondria and ischemia/reperfusion injury , 2010, Molecular and Cellular Biochemistry.

[10]  Nicolas Guizard,et al.  Brain Volume and Metabolism in Fetuses With Congenital Heart Disease: Evaluation With Quantitative Magnetic Resonance Imaging and Spectroscopy , 2010, Circulation.

[11]  Jörg Männer,et al.  In vivo imaging of the cyclic changes in cross‐sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[12]  Kuniya Abe,et al.  Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest. , 2009, American journal of physiology. Heart and circulatory physiology.

[13]  I. Netuka,et al.  Gender Differences in Cardiac Ischemic Injury and Protection—Experimental Aspects , 2009, Experimental biology and medicine.

[14]  G. Marx,et al.  In Utero Valvuloplasty for Pulmonary Atresia With Hypoplastic Right Ventricle: Techniques and Outcomes , 2009, Pediatrics.

[15]  Lubo Zhang,et al.  Prenatal Hypoxia Causes a Sex-Dependent Increase in Heart Susceptibility to Ischemia and Reperfusion Injury in Adult Male Offspring: Role of Protein Kinase Cϵ , 2009, Journal of Pharmacology and Experimental Therapeutics.

[16]  A. Moorman,et al.  The Tbx2+ Primary Myocardium of the Atrioventricular Canal Forms the Atrioventricular Node and the Base of the Left Ventricle , 2009, Circulation research.

[17]  D. Mevorach,et al.  Early Diagnosis and Treatment of Atrioventricular Block in the Fetus Exposed to Maternal Anti-SSA/Ro-SSB/La Antibodies: A Prospective, Observational, Fetal Kinetocardiogram–Based Study , 2009, Circulation.

[18]  P. Carmeliet,et al.  Hypoxia Induces Dilated Cardiomyopathy in the Chick Embryo: Mechanism, Intervention, and Long-Term Consequences , 2009, PloS one.

[19]  D. Ornitz,et al.  Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. , 2009, Circulation research.

[20]  D. Henderson,et al.  Autonomic innervation of the developing heart: Origins and function , 2009, Clinical anatomy.

[21]  Nicholas S Peters,et al.  Connexin40 Imparts Conduction Heterogeneity to Atrial Tissue , 2008, Circulation research.

[22]  Samuel Bernard,et al.  Evidence for Cardiomyocyte Renewal in Humans , 2008, Science.

[23]  M. Blaha,et al.  Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia , 2008, Anatomical record.

[24]  D. Franco,et al.  Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development. , 2008, Cardiovascular research.

[25]  R. Markwald,et al.  Epicardium-Derived Cells in Development of Annulus Fibrosis and Persistence of Accessory Pathways , 2008, Circulation.

[26]  A. Hofman,et al.  Fetal Hemodynamic Adaptive Changes Related to Intrauterine Growth: The Generation R Study , 2008, Circulation.

[27]  Mimi Y. Kim,et al.  Utility of Cardiac Monitoring in Fetuses at Risk for Congenital Heart Block: The PR Interval and Dexamethasone Evaluation (PRIDE) Prospective Study , 2008, Circulation.

[28]  David Sedmera,et al.  High‐frequency ultrasonographic imaging of avian cardiovascular development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  Richard P Harvey,et al.  Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium , 2007, Circulation research.

[30]  F. Kolář,et al.  Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects , 2007, Respiratory Physiology & Neurobiology.

[31]  Jeffrey Robbins,et al.  Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury , 2007, Nature Medicine.

[32]  J. Vinten-johansen Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion , 2007, Heart Failure Reviews.

[33]  David Sedmera,et al.  Increased Ventricular Preload Is Compensated by Myocyte Proliferation in Normal and Hypoplastic Fetal Chick Left Ventricle , 2007, Circulation research.

[34]  A. Moorman,et al.  Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. , 2007, Genes & development.

[35]  C. Chassagne,et al.  ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats. , 2007, American journal of physiology. Heart and circulatory physiology.

[36]  M. DeRuiter,et al.  Nkx2.5‐negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system , 2007, Anatomical record.

[37]  R. P. Thompson,et al.  Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture. , 2006, American journal of physiology. Heart and circulatory physiology.

[38]  J. Weiss,et al.  Atrioventricular Ring Reentry in Embryonic Mouse Hearts , 2006, Circulation.

[39]  Colin K. L. Phoon,et al.  Imaging Tools for the Developmental Biologist: Ultrasound Biomicroscopy of Mouse Embryonic Development , 2006, Pediatric Research.

[40]  Anna I Hickerson,et al.  The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump , 2006, Science.

[41]  G. Marx,et al.  Aortic valvuloplasty in the fetus: technical characteristics of successful balloon dilation. , 2005, The Journal of pediatrics.

[42]  D. Sedmera Form follows function: developmental and physiological view on ventricular myocardial architecture. , 2005, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[43]  A. Schmiedl,et al.  Electron microscopy and microcalorimetry of the postnatal rat heart (Rattus norvegicus). , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[44]  W. Laskey Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: A pilot study , 2005, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[45]  P. Bernardi,et al.  Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. , 2005, Cardiovascular research.

[46]  Bradley B Keller,et al.  Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[47]  A. Cook,et al.  Current issues and perspectives in hypoplasia of the left heart , 2005, Cardiology in the Young.

[48]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[49]  Audrey C. Marshall,et al.  Balloon Dilation of Severe Aortic Stenosis in the Fetus: Potential for Prevention of Hypoplastic Left Heart Syndrome Candidate Selection, Technique, and Results of Successful Intervention , 2004, Circulation.

[50]  R. P. Thompson,et al.  Developmental transitions in electrical activation patterns in chick embryonic heart. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[51]  R. P. Thompson,et al.  Optical Mapping of Electrical Activation in the Developing Heart , 2004, Microscopy and Microanalysis.

[52]  Orlando Aristizábal,et al.  Embryonic Heart Failure in NFATc1−/− Mice: Novel Mechanistic Insights From In Utero Ultrasound Biomicroscopy , 2004, Circulation research.

[53]  Harold V M van Rijen,et al.  Architectural and functional asymmetry of the His-Purkinje system of the murine heart. , 2004, Cardiovascular research.

[54]  T. R. Hansen,et al.  Maternal nutrient restriction alters gene expression in the ovine fetal heart , 2004, The Journal of physiology.

[55]  D. Roden,et al.  Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. , 2004, The Journal of clinical investigation.

[56]  T. Mikawa,et al.  Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart , 2004, Development.

[57]  David Sedmera,et al.  Developmental anatomy of the heart: a tale of mice and man. , 2003, Physiological genomics.

[58]  J. Downey,et al.  Preconditioning the myocardium: from cellular physiology to clinical cardiology. , 2003, Physiological reviews.

[59]  A. Moorman,et al.  Cardiac chamber formation: development, genes, and evolution. , 2003, Physiological reviews.

[60]  P. dos Santos,et al.  Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. , 2003, Biochimica et biophysica acta.

[61]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[62]  Lubo Zhang,et al.  Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. , 2003, American journal of physiology. Heart and circulatory physiology.

[63]  Robert P. Thompson,et al.  Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[64]  Robert G. Gourdie,et al.  Hemodynamics Is a Key Epigenetic Factor in Development of the Cardiac Conduction System , 2003, Circulation research.

[65]  Robert P. Thompson,et al.  Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. , 2003, American journal of physiology. Heart and circulatory physiology.

[66]  P. Flachs,et al.  Expression of mitochondrial uncoupling protein 3 and adenine nucleotide translocase 1 genes in developing rat heart: putative involvement in control of mitochondrial membrane potential. , 2003, Journal of molecular and cellular cardiology.

[67]  David Sedmera,et al.  Development of the cardiac pacemaking and conduction system. , 2003, Birth defects research. Part C, Embryo today : reviews.

[68]  Joseph A. Izatt,et al.  Optical Coherence Tomography: A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos , 2002, Circulation.

[69]  F. Kolář,et al.  Ischemic Preconditioning in Chronically Hypoxic Neonatal Rat Heart , 2002, Pediatric Research.

[70]  D. Sedmera,et al.  Developmental changes in cardiac recovery from anoxia-reoxygenation. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[71]  S. Rivkees,et al.  Neuregulin-1 promotes formation of the murine cardiac conduction system , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Friedman,et al.  Congenital heart block in neonatal lupus: The pediatric cardiologist’s perspective , 2002, Indian journal of pediatrics.

[73]  Robert P. Thompson,et al.  Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[74]  J Jalife,et al.  Visualization and functional characterization of the developing murine cardiac conduction system. , 2001, Development.

[75]  D. Moskophidis,et al.  Targeted inactivation of the sodium‐calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[76]  D. Barker,et al.  Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth , 2001, Pediatric Research.

[77]  Y. Ribaupierre,et al.  Oxidative and Glycogenolytic Capacities within the Developing Chick Heart , 2001, Pediatric Research.

[78]  P. Bernardi,et al.  Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart* , 2001, The Journal of Biological Chemistry.

[79]  J. Jalife,et al.  High-Resolution Optical Mapping of the Right Bundle Branch in Connexin40 Knockout Mice Reveals Slow Conduction in the Specialized Conduction System , 2000, Circulation research.

[80]  Yves Usson,et al.  Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart , 2000, Anatomy and Embryology.

[81]  Robert H. Anderson,et al.  Developmental patterning of the myocardium , 2000, The Anatomical record.

[82]  M. Jacobs,et al.  Congenital Heart Surgery Nomenclature and Database Project: hypoplastic left heart syndrome. , 2000, The Annals of thoracic surgery.

[83]  A. Rudolph,et al.  Myocardial growth before and after birth: clinical implications * , 2000, Acta paediatrica.

[84]  J. Seidman,et al.  Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. , 1999, Journal of Clinical Investigation.

[85]  J. Steinberger,et al.  Ventricular growth stimulation to achieve two-ventricle repair in unbalanced common atrioventricular canal , 1999 .

[86]  N. Dhalla,et al.  Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. , 1999, Physiological reviews.

[87]  L. Kappenberger,et al.  The Chick Embryo Heart as an Experimental Setup for the Assessment of Myocardial Remodeling Induced by Pacing , 1999, Pacing and clinical electrophysiology : PACE.

[88]  G. Gross,et al.  Preconditioning in immature rabbit hearts: role of KATP channels. , 1999, Circulation.

[89]  E. Clark,et al.  Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions , 1999, The Anatomical record.

[90]  M. Shattock,et al.  Ischemic preconditioning in immature myocardium. , 1998, Circulation.

[91]  P. Bernardi,et al.  Mitochondrial function as a determinant of recovery or death in cell response to injury , 1998, Molecular and Cellular Biochemistry.

[92]  J. Parratt,et al.  Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. , 1998, Journal of molecular and cellular cardiology.

[93]  G. Semenza,et al.  Cardiac hypertrophy in chronically anemic fetal sheep: Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. , 1998, American journal of obstetrics and gynecology.

[94]  R. D. Gilbert Fetal myocardial responses to long-term hypoxemia. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[95]  Y. de Ribaupierre,et al.  Inhibition of bicarbonate transport protects embryonic heart against reoxygenation-induced dysfunction. , 1998, Journal of molecular and cellular cardiology.

[96]  Y. de Ribaupierre,et al.  Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. , 1998, Journal of cardiovascular pharmacology.

[97]  V. Pelouch,et al.  Effect of the preweaning nutritional state on the cardiac protein profile and functional performance of the rat heart , 1997, Molecular and Cellular Biochemistry.

[98]  D. M. Freeman,et al.  Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. , 1997, Circulation research.

[99]  I. Rebeyka,et al.  Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. , 1997, Surgery.

[100]  E. Clark,et al.  Developmental changes in the myocardial architecture of the chick , 1997, The Anatomical record.

[101]  K. Kamino,et al.  Video-imaging assessment of initial beating patterns of the early embryonic chick heart. , 1996, The Japanese journal of physiology.

[102]  R. Evans,et al.  RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. , 1996, The Journal of clinical investigation.

[103]  A. Gerdes,et al.  Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. , 1996, Journal of molecular and cellular cardiology.

[104]  J. P. Tinney,et al.  In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to -14.5 mouse embryos. , 1996, Circulation research.

[105]  Y. Ribaupierre,et al.  Glucose Is Arrhythmogenic in the Anoxic-Reoxygenated Embryonic Chick Heart , 1996, Pediatric Research.

[106]  R. Tomanek Formation of the coronary vasculature: a brief review. , 1996, Cardiovascular research.

[107]  A. Wenink,et al.  Nuclear and cellular size of myocytes in different segments of the developing rat heart , 1996, The Anatomical record.

[108]  T. Ohtsuka,et al.  Cardiac enzyme activities in fetal and adult pregnant and nonpregnant sheep exposed to high-altitude hypoxemia. , 1995, Journal of applied physiology.

[109]  S. Colan,et al.  Left heart obstructive lesions and left ventricular growth in the midtrimester fetus. A longitudinal study. , 1995, Circulation.

[110]  A. Moorman,et al.  Differential connexin distribution accommodates cardiac function in different species , 1995, Microscopy research and technique.

[111]  H. Drexler,et al.  Reciprocal changes in the postnatal expression of the sarcolemmal Na+-Ca(2+)-exchanger and SERCA2 in rat heart. , 1995, Journal of molecular and cellular cardiology.

[112]  H. Schägger,et al.  Cytochrome-c oxidase in developing rat heart. Enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. , 1995, European journal of biochemistry.

[113]  E. Baker,et al.  Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. , 1995, The American journal of physiology.

[114]  C. Martyn,et al.  Growth in utero and serum cholesterol concentrations in adult life. , 1993, BMJ.

[115]  E. Riva,et al.  Age-dependent changes in myocardial susceptibility to ischemic injury. , 1993, Cardioscience.

[116]  J. Procházka,et al.  Early postnatal development of contractile performance and responsiveness to Ca2+, verapamil and ryanodine in the isolated rat heart. , 1993, Journal of molecular and cellular cardiology.

[117]  C. Green,et al.  Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. , 1993, Circulation research.

[118]  Fons J. Verbeek,et al.  New Findings Concerning Ventricular Septation in the Human Heart: Implications for Maldevelopment , 1992, Circulation.

[119]  W H Lamers,et al.  Persisting zones of slow impulse conduction in developing chicken hearts. , 1992, Circulation research.

[120]  V. Pelouch,et al.  Lack of proportionality between gene dosage and total muscle protein content in the rat heart. , 1992, The International journal of developmental biology.

[121]  E. Raddatz,et al.  Oxygen uptake during early cardiogenesis of the chick. , 1992, The American journal of physiology.

[122]  A. Moorman,et al.  Spatial distribution of “tissue‐specific” antigens in the developing human heart and skeletal muscle III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system , 1992, The Anatomical record.

[123]  Bradley B Keller,et al.  Diastolic Filling Characteristics in the Stage 12 to 27 Chick Embryo Ventricle , 1991, Pediatric Research.

[124]  T. Pexieder,et al.  Variations in microscopic anatomy and ultrastructure of human embryonic hearts subjected to three different modes of fixation. , 1990, Pathology, research and practice.

[125]  G. Buckberg,et al.  STUDIES OF MYOCARDIAL PROTECTION IN THE IMMATURE HEART. II, EVIDENCE FOR IMPORTANCE OF AMINO ACID METABOLISM IN TOLERANCE TO ISCHEMIA , 1990 .

[126]  J. Mortola,et al.  Body growth, lung and heart weight, and DNA content in newborn rats exposed to different levels of chronic hypoxia. , 1990, Canadian journal of physiology and pharmacology.

[127]  M. C. Morales,et al.  Influence of age, growth, and sex on cardiac myocyte size and number in rats , 1990, The Anatomical record.

[128]  B. Hučín,et al.  Effect of hypoxaemia on enzymes supplying myocardial energy in children with congenital heart disease. , 1989, International journal of cardiology.

[129]  J Golding,et al.  Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. , 1989, BMJ.

[130]  M. Vuillemin,et al.  Normal stages of cardiac organogenesis in the mouse: I. Development of the external shape of the heart. , 1989, The American journal of anatomy.

[131]  T. Slotkin,et al.  Postnatal nutritional status influences development of cardiac adrenergic receptor binding sites , 1988, Brain Research Bulletin.

[132]  T. Slotkin,et al.  Biochemical Determinants of Growth Sparing during Neonatal Nutritional Deprivation or Enhancement: Ornithine Decarboxylase, Polyamines, and Macromolecules in Brain Regions and Heart , 1987, Pediatric Research.

[133]  E. Clark,et al.  Effect of Heart Rate Increase on Dorsal Aortic Flow in the Stage 24 Chick Embryo , 1987, Pediatric Research.

[134]  R. Jennings,et al.  Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. , 1986, Circulation.

[135]  O. Pantoja,et al.  Electrophysiological and ultrastructural study of the atrioventricular canal during the development of the chick embryo. , 1986, Journal of molecular and cellular cardiology.

[136]  E. Clark,et al.  Ventricular function and morphology in chick embryo from stages 18 to 29. , 1986, The American journal of physiology.

[137]  T. Yada,et al.  Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording. , 1985, The Journal of physiology.

[138]  R. Arcilla,et al.  Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. , 1985, Circulation research.

[139]  R. T. Dowell,et al.  Perinatal nutritional modification of weanling rat heart contractile protein. , 1984, The American journal of physiology.

[140]  Kohtaro Kamino,et al.  Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye , 1981, Nature.

[141]  G W Moore,et al.  Shape of the human cardiac ventricles. , 1978, The American journal of cardiology.

[142]  V. Mareš,et al.  DNA synthesis in the ventricular myocardium of young rats exposed to intermittent high altitude (IHA) hypoxia , 1977, Virchows Archiv. B, Cell pathology.

[143]  C. E. Challice,et al.  The development of the conduction system in the mouse embryo heart. , 1977, Developmental biology.

[144]  C. E. Challice,et al.  The development of the conduction system in the mouse embryo heart. II. Histogenesis of the atrioventricular node and bundle. , 1977, Developmental biology.

[145]  C. E. Challice,et al.  The development of the conduction system in the mouse embryo heart. I. The first embryonic A-V conduction pathway. , 1977, Developmental biology.

[146]  M. Hollenberg,et al.  Effects of hypoxia on cardiac growth in neonatal rat. , 1976, The American journal of physiology.

[147]  J. Hoerter Changes in the sensitivity to hypoxia and glucose deprivation in the isolated perfused rabbit heart during perinatal development , 1976, Pflügers Archiv.

[148]  B. Korecky,et al.  Cellular Hyperplasia and Hypertrophy in Cardiomegalies Induced by Anemia in Young and Adult Rats , 1972, Circulation research.

[149]  Naeye Rl Organ and cellular development in mice growing at simulated high altitude. , 1966 .

[150]  A. Hurtado Some clinical aspects of life at high altitudes. , 1960, Annals of internal medicine.

[151]  N. J. Eastman Mount Everest in utero. , 1954, American journal of obstetrics and gynecology.

[152]  A. Moorman,et al.  Patterning and Development of the Conduction System of the Heart: Origins of the Conduction System in Development , 2010 .

[153]  Richard P. Harvey,et al.  Heart Development and Regeneration , 2010 .

[154]  J. Wilhelm,et al.  Lipofuscin-like pigments in the rat heart during early postnatal development: effect of selenium supplementation. , 2010, Physiological research.

[155]  J. Xavier-Neto,et al.  Evolutionary Origins of Hearts , 2010 .

[156]  R. Bolli Preconditioning: a paradigm shift in the biology of myocardial ischemia. , 2007, American journal of physiology. Heart and circulatory physiology.

[157]  Z. Chvojkova,et al.  Low body weight and cardiac tolerance to ischemia in neonatal rats. , 2005, Physiological research.

[158]  G. Gross,et al.  Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. , 2005, American journal of physiology. Heart and circulatory physiology.

[159]  I. Efimov,et al.  Electrophysiology and anatomy of embryonic rabbit hearts before and after septation. , 2005, American journal of physiology. Heart and circulatory physiology.

[160]  J. Houštěk,et al.  Developmental changes of cytochrome c oxidase and citrate synthase in rat heart homogenate. , 2004, Physiological research.

[161]  V. Han,et al.  Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. , 1997, The American journal of physiology.

[162]  F. Kolář,et al.  Effect of prenatal hypoxia on contractile performance and responsiveness to Ca2+ in the isolated perinatal rat heart. , 1995, Physiological research.

[163]  J. Widimský,et al.  Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. , 1995, Physiological research.

[164]  G. Buckberg,et al.  Studies of myocardial protection in the immature heart. III. Models of ischemic and hypoxic/ischemic injury in the immature puppy heart. , 1991, The Journal of thoracic and cardiovascular surgery.

[165]  B. Keller,et al.  Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. , 1990, Circulation research.

[166]  J. Widimský,et al.  Comparison of cardiopulmonary response to intermittent high-altitude hypoxia in young and adult rats. , 1989, Respiration; international review of thoracic diseases.

[167]  Aileen B. Sedman,et al.  A longitudinal study , 1987 .

[168]  J. Icardo,et al.  Morphologic study of ventricular trabeculation in the embryonic chick heart. , 1987, Acta anatomica.

[169]  J. Nora,et al.  Congenital heart disease : causes and processes , 1984 .

[170]  Vassall-Adams Pr The development of the atrioventricular bundle and its branches in the avian heart. , 1982 .

[171]  I. Ošťádalová,et al.  Initial solid food intake and growth of young rats in nests of different sizes. , 1973, Physiologia Bohemoslovaca.

[172]  T.W.Sadler Langman's Medical Embryology , 1969 .

[173]  K. Rakušan,et al.  Differences in capillary supply of hypertrophic and hyperplastic hearts. , 1966, Cardiologia.