Differentially Private Nonlinear Observers

This chapter introduces tools for the design of differentially private nonlinear dynamic observers. Indeed, the dynamic models useful to estimate and predict the characteristics of a population, originating for example from epidemiology or the social sciences, are often nonlinear. The main issue discussed is the computation of the sensitivity of a class of nonlinear observers, which is necessary to design differentially private output perturbation or two-stage mechanisms, when the first stage is nonlinear. We use here contraction analysis in order to design convergent observers with appropriately controlled sensitivity. Two examples are also discussed for illustration purposes: estimating the edge formation probabilities in a social network using a dynamic stochastic block model, and syndromic surveillance relying on an epidemiological model.

[1]  A. Isidori Lectures in Feedback Design for Multivariable Systems , 2016 .

[2]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[3]  Jerome Le Ny,et al.  Privacy-preserving nonlinear observer design using contraction analysis , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[4]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[5]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[6]  Andrew B. Lawson,et al.  Spatial and syndromic surveillance for public health , 2005 .

[7]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[8]  Alfred O. Hero,et al.  Dynamic Stochastic Blockmodels for Time-Evolving Social Networks , 2014, IEEE Journal of Selected Topics in Signal Processing.

[9]  Andrew B. Lawson,et al.  Spatial and Syndromic Surveillance for Public Health: Lawson/Spatial and Syndromic Surveillance for Public Health , 2005 .

[10]  Pablo A. Parrilo,et al.  Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming , 2006, at - Automatisierungstechnik.

[11]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[12]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[13]  Saptarshi Bandyopadhyay,et al.  Phase synchronization control of complex networks of Lagrangian systems on adaptive digraphs , 2013, Autom..

[14]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[15]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[16]  Jerome Le Ny,et al.  Differentially private nonlinear observer design using contraction analysis , 2018, International Journal of Robust and Nonlinear Control.

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[19]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[20]  Eduardo Sontag Contractive Systems with Inputs , 2010 .

[21]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[22]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[23]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[24]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[25]  Zhongmin Shen,et al.  Lectures on Finsler Geometry , 2001 .