Sparse Spectrum Gaussian Process Regression

We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to sparsify the spectral representation of the GP. This leads to a simple, practical algorithm for regression tasks. We compare the achievable trade-offs between predictive accuracy and computational requirements, and show that these are typically superior to existing state-of-the-art sparse approximations. We discuss both the weight space and function space representations, and note that the new construction implies priors over functions which are always stationary, and can approximate any covariance function in this class.

[1]  Christopher K. I. Williams Computing with Infinite Networks , 1996, NIPS.

[2]  Volker Tresp,et al.  A Bayesian Committee Machine , 2000, Neural Computation.

[3]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[4]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[5]  G. L. Bretthorst Nonuniform sampling: Bandwidth and aliasing , 2001 .

[6]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[7]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[8]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[9]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[10]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[11]  Carl E. Rasmussen,et al.  Healing the relevance vector machine through augmentation , 2005, ICML.

[12]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[13]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[14]  Sean B. Holden,et al.  The Generalized FITC Approximation , 2007, NIPS.

[15]  M. Lázaro-Gredilla Sparse Spectral Sampling Gaussian Processes , 2007 .

[16]  J. Weston,et al.  Approximation Methods for Gaussian Process Regression , 2007 .

[17]  M. Opper Sparse Online Gaussian Processes , 2008 .

[18]  Bernhard Schölkopf,et al.  Sparse multiscale gaussian process regression , 2008, ICML '08.

[19]  Trevor Darrell,et al.  Sparse probabilistic regression for activity-independent human pose inference , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Aníbal R. Figueiras-Vidal,et al.  Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.

[21]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[22]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[23]  Miguel Lázaro Gredilla Sparse gaussian processes for large-scale machine learning , 2011 .