Exploring phase space with Neural Importance Sampling

We present a novel approach for the integration of scattering cross sections and the generation of partonic event samples in high-energy physics. We propose an importance sampling technique capable of overcoming typical deficiencies of existing approaches by incorporating neural networks. The method guarantees full phase space coverage and the exact reproduction of the desired target distribution, in our case given by the squared transition matrix element. We study the performance of the algorithm for a few representative examples, including top-quark pair production and gluon scattering into three- and four-gluon final states.

[1]  Andreas Scharf,et al.  R E C O L A - REcursive Computation of One-Loop Amplitudes , 2016, Comput. Phys. Commun..

[3]  R. Kleiss,et al.  Generating QCD antennas , 2000, hep-ph/0008068.

[4]  Tim Stelzer,et al.  MadGraph/MadEvent v4: The New Web Generation , 2007, 0706.2334.

[5]  Hamid Kharraziha,et al.  The Metropolis algorithm for on-shell four-momentum phase space (vol 127, pg 242, 2000) , 2000 .

[6]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[7]  Ansgar Denner,et al.  J an 2 01 8 R E C O L A 2 REcursive Computation of One-Loop Amplitudes 2 ✩ Version 2 . 0 , 2018 .

[8]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[9]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[10]  P. Nason MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions , 2007, 0709.2085.

[11]  Max Welling,et al.  Emerging Convolutions for Generative Normalizing Flows , 2019, ICML.

[12]  Ansgar Denner,et al.  Recursive generation of one-loop amplitudes in the Standard Model , 2012, 1211.6316.

[13]  Thomas Hahn Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..

[14]  S. Jadach Foam: A general-purpose cellular Monte Carlo event generator☆☆☆ , 2003 .

[15]  E. Nurse,et al.  General-purpose event generators for LHC physics , 2011, 1101.2599.

[16]  J. Winter,et al.  A Forward Branching Phase-Space Generator , 2011, 1106.5045.

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  Steffen Schumann,et al.  Event generation with Sherpa 2.2 , 2019, SciPost Physics.

[19]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[20]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[21]  T. Gleisberg,et al.  Comix, a new matrix element generator , 2008, 0808.3674.

[22]  Rob Verheyen,et al.  Event Generation and Statistical Sampling with Deep Generative Models , 2019 .

[23]  Christina Gao,et al.  i- flow: High-dimensional integration and sampling with normalizing flows , 2020, Machine Learning: Science and Technology.

[24]  Antoine Wehenkel,et al.  Unconstrained Monotonic Neural Networks , 2019, BNAIC/BENELEARN.

[25]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[27]  A. van Hameren,et al.  PARNI for importance sampling and density estimation , 2007, 0710.2448.

[28]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[29]  Steffen Schumann,et al.  MC3 - A Multi-Channel Markov Chain Monte Carlo algorithm for phase-space sampling , 2014, Comput. Phys. Commun..

[30]  F. Siegert,et al.  Beyond standard model calculations with Sherpa , 2014, The European physical journal. C, Particles and fields.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..

[33]  T. Figy,et al.  A Projective Phase Space Generator for Hadronic Vector Boson Plus One Jet Production , 2019, 1907.03893.

[34]  Tilman Plehn,et al.  How to GAN LHC events , 2019, SciPost Physics.

[35]  Christina Gao,et al.  Event generation with normalizing flows , 2020 .

[36]  Matthias Zwicker,et al.  Learning to Importance Sample in Primary Sample Space , 2018, Comput. Graph. Forum.

[37]  M. Cacciari,et al.  A pr 2 00 8 The anti-k t jet clustering algorithm , 2008 .

[38]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[39]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[40]  A. van Hameren,et al.  Kaleu: A General-Purpose Parton-Level Phase Space Generator , 2010, 1003.4953.

[41]  David Duvenaud,et al.  Invertible Residual Networks , 2018, ICML.

[42]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[43]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[44]  G. Soff,et al.  AMEGIC++ 1.0: A Matrix element generator in C++ , 2001, hep-ph/0109036.

[45]  J. Winter,et al.  Event generation with , 2009 .

[46]  R.Pittau,et al.  Weight optimization in multichannel Monte Carlo , 1994 .

[47]  Thorsten Ohl,et al.  Vegas revisited : Adaptive Monte Carlo integration beyond factorization , 1998, hep-ph/9806432.

[48]  Sana Ketabchi Haghighat,et al.  DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC , 2019, Journal of High Energy Physics.

[49]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[50]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[51]  Arnold W. M. Smeulders,et al.  i-RevNet: Deep Invertible Networks , 2018, ICLR.

[52]  E. Byckling,et al.  n-particle phase space in terms of invariant momentum transfers , 1969 .

[53]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[54]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[55]  A hierarchical phase space generator for QCD antenna structures , 2002, hep-ph/0204055.

[56]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[57]  S. Jadach Foam: Multi-dimensional general purpose Monte Carlo generator with self-adapting simplical grid , 1999 .

[58]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[59]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[60]  T. Figy,et al.  A forward branching phase space generator for hadron colliders , 2018, Journal of High Energy Physics.

[61]  Damian Podareanu,et al.  Event generation and statistical sampling for physics with deep generative models and a density information buffer , 2019, Nature Communications.

[62]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[63]  H. Schulz,et al.  Simulation of vector boson plus many jet final states at the high luminosity LHC , 2019, Physical Review D.