Relative log-concavity and a pair of triangle inequalities

The relative log-concavity ordering $\leq_{\mathrm{lc}}$ between probability mass functions (pmf's) on non-negative integers is studied. Given three pmf's $f,g,h$ that satisfy $f\leq_{\mathrm{lc}}g\leq_{\mathrm{lc}}h$, we present a pair of (reverse) triangle inequalities: if $\sum_iif_i=\sum_iig_i<\infty,$ then \[D(f|h)\geq D(f|g)+D(g|h)\] and if $\sum_iig_i=\sum_iih_i<\infty,$ then \[D(h|f)\geq D(h|g)+D(g|f),\] where $D(\cdot|\cdot)$ denotes the Kullback--Leibler divergence. These inequalities, interesting in themselves, are also applied to several problems, including maximum entropy characterizations of Poisson and binomial distributions and the best binomial approximation in relative entropy. We also present parallel results for continuous distributions and discuss the behavior of $\leq_{\mathrm{lc}}$ under convolution.

[1]  C. Stein Approximate computation of expectations , 1986 .

[2]  George Polya,et al.  On The Product of Two Power Series , 1949, Canadian Journal of Mathematics.

[3]  W. Ehm Binomial approximation to the Poisson binomial distribution , 1991 .

[4]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[5]  Yaming Yu,et al.  On the Entropy of Compound Distributions on Nonnegative Integers , 2009, IEEE Transactions on Information Theory.

[6]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[7]  Yaming Yu Stochastic Ordering of Exponential Family Distributions and Their Mixturesxk , 2009, Journal of Applied Probability.

[8]  A. Barbour,et al.  Poisson Approximation , 1992 .

[9]  W. Hoeffding On the Distribution of the Number of Successes in Independent Trials , 1956 .

[10]  Yaming Yu,et al.  On the Maximum Entropy Properties of the Binomial Distribution , 2008, IEEE Transactions on Information Theory.

[11]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[12]  W. Chan,et al.  Unimodality, convexity, and applications , 1989 .

[13]  Ward Whitt,et al.  Uniform conditional variability ordering of probability distributions , 1985 .

[14]  Ingram Olkin,et al.  Entropy of the Sum of Independent Bernoulli Random Variables and of the Multinomial Distribution , 1981 .

[15]  Imre Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[16]  Aihua Xia,et al.  Approximating the number of successes in independent trials: Binomial versus Poisson , 2002 .

[17]  O. Johnson Log-concavity and the maximum entropy property of the Poisson distribution , 2006, math/0603647.

[18]  Thomas M. Liggett Ultra Logconcave Sequences and Negative Dependence , 1997, J. Comb. Theory, Ser. A.

[19]  P. Mateev On the Entropy of the Multinomial Distribution , 1978 .

[20]  S. Karlin,et al.  Entropy inequalities for classes of probability distributions I. The univariate case , 1981, Advances in Applied Probability.

[21]  Samuel Karlin,et al.  Generalized convex inequalities , 1963 .

[22]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[23]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[24]  Peter Harremoës,et al.  Binomial and Poisson distributions as maximum entropy distributions , 2001, IEEE Trans. Inf. Theory.

[25]  Yaming Yu,et al.  On an inequality of Karlin and Rinott concerning weighted sums of i.i.d. random variables , 2008, Advances in Applied Probability.

[26]  Louis H. Y. Chen Poisson Approximation for Dependent Trials , 1975 .

[27]  Mokshay M. Madiman,et al.  On the entropy and log-concavity of compound Poisson measures , 2008, ArXiv.

[28]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[29]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[30]  J. Doob Stochastic processes , 1953 .

[31]  R. Pemantle Towards a theory of negative dependence , 2000, math/0404095.