Two Classes of Hot Jupiters

We identify two classes of transiting planet, based on their equilibrium temperatures and Safronov numbers. We examine various possible explanations for the dichotomy. It may reflect the influence of planet or planetesimal scattering in determining when planetary migration stops. Another possibility is that some planets lose more mass to evaporation than others. If this evaporation process preferentially removes helium from the planet, the consequent reduction in the mean molecular weight may explain why some planets have anomalously large radii.

[1]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[2]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[3]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[4]  The Separation/Period Gap in the Distribution of Extrasolar Planets around Stars with Masses M ≥ 1.2 M☉ , 2006, astro-ph/0608347.

[5]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[6]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[7]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[8]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[9]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[10]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[11]  The Spatial Distribution of Metals in the Intergalactic Medium , 2005, astro-ph/0507081.

[12]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[13]  E. Salpeter,et al.  The phase diagram and transport properties for hydrogen-helium fluid planets , 1977 .

[14]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[15]  David Charbonneau,et al.  TrES-4: A Transiting Hot Jupiter of Very Low Density , 2007, 0708.0834.

[16]  T. Guillot,et al.  Orbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets , 1998, astro-ph/9801292.

[17]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[18]  John Southworth,et al.  A method for the direct determination of the surface gravities of transiting extrasolar planets , 2007, 0704.1570.

[19]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[20]  Peter Bodenheimer,et al.  The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultrashort Periods , 2003, astro-ph/0303362.

[21]  B. Hansen,et al.  Cooling Models for Old White Dwarfs , 1999, astro-ph/9903025.

[22]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  Tel Aviv,et al.  An intriguing correlation between the masses and periods of the transiting planets , 2004, astro-ph/0411701.

[25]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[26]  Hansen,et al.  Migrating planets , 1998, Science.

[27]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[28]  B. Wood,et al.  Potassium in the Earth’s core? , 2002 .

[29]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[30]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[31]  M. Holman,et al.  Accepted for publication in the Astrophysical Journal Letters Obliquity Tides on Hot Jupiters , 2005 .

[32]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[33]  S. N. Vogel,et al.  The AGN and gas disc in the low surface brightness galaxy PGC 045080 , 2007, 0705.1417.

[34]  Julio A. Fernández,et al.  Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals , 1984 .

[35]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[36]  S. Tremaine,et al.  The Formation and Extent of the Solar System Comet Cloud , 1987 .

[37]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[38]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[39]  H. Lichtenegger,et al.  Mass loss of “Hot Jupiters”—Implications for CoRoT discoveries. Part I: The importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections , 2007 .

[40]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[41]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[42]  J. Pollack,et al.  A calculation of Saturn's gravitational contraction history , 1977 .

[43]  P. H. Hauschildt,et al.  Numerical solution of the expanding stellar atmosphere problem , 1998 .

[44]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[45]  A. Burrows,et al.  The science of brown dwarfs , 1993 .