Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure

[1]  R. Reis,et al.  Association of microsatellite instability (MSI) status with the 5-year outcome and genetic ancestry in a large Brazilian cohort of colorectal cancer , 2022, European Journal of Human Genetics.

[2]  Alicia R. Martin,et al.  Diversity in Genomic Studies: A Roadmap to Address the Imbalance , 2022, Nature Medicine.

[3]  V. Rebecca,et al.  Un-Fair Skin: racial disparities in acral melanoma research , 2022, Nature Reviews Cancer.

[4]  Insuk Lee,et al.  The importance of enhancer methylation for epigenetic regulation of tumorigenesis in squamous lung cancer , 2022, Experimental & molecular medicine.

[5]  R. Reis,et al.  The biobank of barretos cancer hospital: 14 years of experience in cancer research , 2021, Cell and Tissue Banking.

[6]  D. Elder,et al.  More than just acral melanoma: the controversies of defining the disease , 2021, The journal of pathology. Clinical research.

[7]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[8]  D. Schadendorf,et al.  Integrated molecular drivers coordinate biological and clinical states in melanoma , 2020, Nature Genetics.

[9]  Z. Herceg,et al.  Pan-cancer multi-omics analysis and orthogonal experimental assessment of epigenetic driver genes , 2020, Genome research.

[10]  Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. , 2020, CA: a cancer journal for clinicians.

[11]  J. Tegnér,et al.  Harmonization of quality metrics and power calculation in multi-omic studies , 2020, Nature Communications.

[12]  J. Wilmott,et al.  Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition , 2020, Nature Communications.

[13]  Dario Strbenac,et al.  Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition , 2020, Nature Communications.

[14]  R. Reis,et al.  Role of Genetic Ancestry in 1,002 Brazilian Colorectal Cancer Patients From Barretos Cancer Hospital , 2020, Frontiers in Oncology.

[15]  D. Elder,et al.  The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. , 2020, Archives of pathology & laboratory medicine.

[16]  M. Tetzlaff,et al.  Aberrant DNA Methylation Predicts Melanoma-Specific Survival in Patients with Acral Melanoma , 2019, Cancers.

[17]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[18]  R. Reis,et al.  Mutational profile of Brazilian lung adenocarcinoma unveils association of EGFR mutations with high Asian ancestry and independent prognostic role of KRAS mutations , 2019, Scientific Reports.

[19]  Kim-Anh Lê Cao,et al.  DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays , 2019, Bioinform..

[20]  James R. Staley,et al.  dmrff: identifying differentially methylated regions efficiently with power and control , 2018, bioRxiv.

[21]  P. Mundra,et al.  Ultraviolet radiation–induced DNA damage is prognostic for outcome in melanoma , 2018, Nature Medicine.

[22]  Marieke E. Ijsselsteijn,et al.  Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data , 2018, bioRxiv.

[23]  Li Ding,et al.  Comprehensive Characterization of Cancer Driver Genes and Mutations (vol 173, 371.e1, 2018) , 2018 .

[24]  Steven J. M. Jones,et al.  Comprehensive Characterization of Cancer Driver Genes and Mutations , 2018, Cell.

[25]  P. Vineis,et al.  Identifying and correcting epigenetics measurements for systematic sources of variation , 2018, Clinical Epigenetics.

[26]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[27]  Jack A. Taylor,et al.  Roadmap for Investigating Epigenome Deregulation and Environmental Origins of Cancer , 2017, International journal of cancer.

[28]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[29]  Hongmei Zhang,et al.  Comparison of different cell type correction methods for genome-scale epigenetics studies , 2017, BMC Bioinformatics.

[30]  W. Karmaus,et al.  Comparison of different cell type correction methods for genome-scale epigenetics studies , 2017, BMC Bioinformatics.

[31]  S. Shukla,et al.  A saga of cancer epigenetics: linking epigenetics to alternative splicing. , 2017, The Biochemical journal.

[32]  E. Bowers,et al.  Linking the Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model , 2017, Toxicological sciences : an official journal of the Society of Toxicology.

[33]  J. L. Costa,et al.  Prevalence of BRCA1/BRCA2 mutations in a Brazilian population sample at-risk for hereditary breast cancer and characterization of its genetic ancestry , 2016, Oncotarget.

[34]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[35]  J. Holbrook,et al.  How to make DNA methylome wide association studies more powerful , 2016, Epigenomics.

[36]  Jovana Maksimovic,et al.  missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform , 2016, Bioinform..

[37]  Hanlee P. Ji,et al.  Pan-cancer analysis of the extent and consequences of intratumor heterogeneity , 2015, Nature Medicine.

[38]  S. Ferrone,et al.  Multiple Structural and Epigenetic Defects in the Human Leukocyte Antigen Class I Antigen Presentation Pathway in a Recurrent Metastatic Melanoma Following Immunotherapy* , 2015, The Journal of Biological Chemistry.

[39]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[40]  Greta M. Massetti,et al.  Vital Signs: Melanoma Incidence and Mortality Trends and Projections — United States, 1982–2030 , 2015, MMWR. Morbidity and mortality weekly report.

[41]  Soo-Nyung Kim,et al.  Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma. , 2015, Journal of the American Academy of Dermatology.

[42]  Timothy J. Peters,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[43]  Peter L Molloy,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[44]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[45]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[46]  Julian Gehring,et al.  SomaticSignatures: inferring mutational signatures from single-nucleotide variants , 2014, bioRxiv.

[47]  U. Lehmann,et al.  DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. , 2014, World journal of gastroenterology.

[48]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[49]  K. Hansen,et al.  Functional normalization of 450k methylation array data improves replication in large cancer studies , 2014, Genome Biology.

[50]  A. Epstein,et al.  Immunogenicity of Murine Solid Tumor Models as a Defining Feature of In Vivo Behavior and Response to Immunotherapy , 2013, Journal of immunotherapy.

[51]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[52]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[53]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[54]  Peter Boyle,et al.  Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis , 2012, BMJ : British Medical Journal.

[55]  L. Chin,et al.  Melanoma: from mutations to medicine. , 2012, Genes & development.

[56]  Philippe Besse,et al.  Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems , 2011, BMC Bioinformatics.

[57]  J. Choi,et al.  Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta‐analysis , 2011, The British journal of dermatology.

[58]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[59]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[60]  L. Zon,et al.  Melanocytes in development and cancer , 2010, Journal of cellular physiology.

[61]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[62]  M. Tucker,et al.  Acral lentiginous melanoma: incidence and survival patterns in the United States, 1986-2005. , 2009, Archives of dermatology.

[63]  F. Schmidt Meta-Analysis , 2008 .

[64]  M. Tenenhaus,et al.  Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach , 2003, Human Genetics.

[65]  R. Gray Modeling Survival Data: Extending the Cox Model , 2002 .

[66]  P. Grambsch,et al.  Modeling Survival Data: Extending the Cox Model , 2000 .

[67]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[68]  R. Tampé,et al.  A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. , 1997, Science.

[69]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[70]  W. Clark,et al.  The histogenesis and biologic behavior of primary human malignant melanomas of the skin. , 1969, Cancer research.

[71]  Niranjan Nagarajan,et al.  ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients. , 2018, Cancer research.

[72]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[73]  N. Bhatia Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis , 2012 .

[74]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[75]  J. Q. Rosso,et al.  Acral Lentiginous Melanoma: Incidence and Survival Patterns in the United States, 1986-2005 , 2010 .

[76]  T. Ono,et al.  Significance of CpG Methylation for Solar UV‐Induced Mutagenesis and Carcinogenesis in Skin ‡ , 2007, Photochemistry and photobiology.

[77]  R. Tampé,et al.  Downregulation of the constitutive tapasin expression in human tumor cells of distinct origin and its transcriptional upregulation by cytokines. , 2001, Tissue antigens.

[78]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .