Speeding up the spatial adiabatic passage of matter waves in optical microtraps by optimal control

We numerically investigate the performance of atomic transport in optical microtraps via the so called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control methods, which enable us to determine suitable transport control pulses. We investigate the ultimate limits of the optimal control in speeding up the transport process in a triple well configuration for both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental parameters achievable with current optical technology.

[1]  I. Lesanovsky,et al.  Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation , 2007 .

[2]  Christian Gierl,et al.  Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps , 2010, 1001.3430.

[3]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[4]  F. Schmidt-Kaler,et al.  Optimization of segmented linear Paul traps and transport of stored particles , 2006, quant-ph/0607217.

[5]  D. Pritchard,et al.  Transport of Bose-Einstein condensates with optical tweezers. , 2001, Physical review letters.

[6]  Kamal Bhattacharyya,et al.  Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .

[7]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  Jordi Mompart,et al.  Atomtronics with holes: Coherent transport of an empty site in a triple-well potential , 2009, 0912.4362.

[9]  Klaus Mølmer,et al.  PHASE COLLAPSE AND EXCITATIONS IN BOSE-EINSTEIN CONDENSATES , 1998 .

[10]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[11]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[12]  J. Mompart,et al.  Three-level atom optics via the tunneling interaction , 2004 .

[13]  Y. Castin,et al.  Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach , 1998 .

[14]  Maxim Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998 .

[15]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[16]  F. Schmidt-Kaler,et al.  Transport of ions in a segmented linear Paul trap in printed-circuit-board technology , 2007, 0711.2947.

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[19]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[20]  Germany,et al.  Transport dynamics of single ions in segmented microstructured Paul trap arrays , 2006, quant-ph/0606237.

[21]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[22]  Tommaso Calarco,et al.  Coherent open-loop optimal control of light-harvesting dynamics , 2011, 1103.0929.

[23]  O. Zobay,et al.  Two-dimensional atom trapping in field-induced adiabatic potentials. , 2001, Physical review letters.

[24]  Malte Schlosser,et al.  Scalable architecture for quantum information processing with atoms in optical micro-structures , 2011, Quantum Inf. Process..

[25]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[26]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[27]  Eric Charron,et al.  Optimizing a phase gate using quantum interference. , 2002, Physical review letters.

[28]  H. J. Korsch,et al.  Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP , 2006 .

[29]  M. Cirone,et al.  Theoretical analysis of a realistic atom-chip quantum gate (9 pages) , 2006 .

[30]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[31]  Jr-Shin Li,et al.  Optimal trajectories for efficient atomic transport without final excitation , 2011 .

[32]  Tilo Steinmetz,et al.  Quantum information processing in optical lattices and magnetic microtraps , 2006, quant-ph/0605163.

[33]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[34]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[35]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[36]  Tommaso Calarco,et al.  High-fidelity fast quantum transport with imperfect controls , 2008, 0810.2491.

[37]  E. Torrontegui,et al.  Fast transport of Bose–Einstein condensates , 2011 .

[38]  W. Ertmer,et al.  Coherent manipulation of atomic qubits in optical micropotentials , 2007, quant-ph/0702085.

[39]  Th. Busch,et al.  Erratum: Coherent adiabatic transport of atoms in radio-frequency traps [Phys. Rev. A 83, 053620 (2011)] , 2012 .

[40]  I. Lesanovsky,et al.  Adiabatic radio-frequency potentials for the coherent manipulation of matter waves , 2006 .

[41]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[42]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[43]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[44]  Jacob F. Sherson,et al.  Quantum computation architecture using optical tweezers , 2011 .

[45]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[46]  Jakob Reichel,et al.  Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip , 2009, 0904.4837.

[47]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[48]  G. Birkl,et al.  Coherent transport of atomic quantum states in a scalable shift register. , 2009, Physical review letters.

[49]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[50]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[51]  I. B. Spielman,et al.  Field-sensitive addressing and control of field-insensitive neutral-atom qubits , 2009, 0902.3213.

[52]  Antoine Browaeys,et al.  Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator , 2004 .

[53]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[54]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[55]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[56]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[57]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[58]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[59]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[60]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[61]  Tommaso Calarco,et al.  Quantum computing implementations with neutral particles , 2011, Quantum Inf. Process..

[62]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[63]  Th. Busch,et al.  Coherent adiabatic transport of atoms in radio-frequency traps , 2011, 1103.2339.

[64]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[65]  P. Landsberg On Bose-Einstein Condensation , 1954 .

[66]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[67]  Knill,et al.  Decoherence Bounds on Quantum Computation with Trapped Ions. , 1996, Physical review letters.

[68]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[69]  Tommaso Calarco,et al.  Microwave potentials and optimal control for robust quantum gates on an atom chip , 2006 .

[70]  William H. Press,et al.  Numerical recipes , 1990 .

[71]  Tommaso Calarco,et al.  Coherent optimal control of photosynthetic molecules , 2012 .

[72]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[73]  Ulrich Hohenester,et al.  Twin-atom beams , 2010, 1012.2348.

[74]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[75]  P. Zoller,et al.  Quantum computations with atoms in optical lattices: marker qubits and molecular interactions , 2004, quant-ph/0403197.

[76]  T. Calarco,et al.  Performance of quantum phase gates with cold trapped atoms , 2003 .

[77]  Miroslav Gajdacz,et al.  Transparent nonlocal species-selective transport in an optical superlattice containing two interacting atom species , 2011, 1103.0539.

[78]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[79]  Tilo Steinmetz,et al.  Coherence in microchip traps. , 2004, Physical review letters.

[80]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[81]  T. Esslinger,et al.  ATOM LASER WITH A CW OUTPUT COUPLER , 1998, cond-mat/9812258.

[82]  W Ertmer,et al.  Quantum computing with spatially delocalized qubits. , 2003, Physical review letters.

[83]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.