First-order periodic impulsive semilinear differential inclusions: Existence and structure of solution sets

[1]  Valeri Obukhovskii,et al.  Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces , 2011 .

[2]  J. Graef,et al.  Structure of solutions sets and a continuous version of Filippov's theorem for first order impulsive differential inclusions with periodic conditions , 2009 .

[3]  L. Górniewicz,et al.  Filippov-Ważewski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions , 2008 .

[4]  T. Cardinali,et al.  Impulsive semilinear differential inclusions: Topological structure of the solution set and solutions on non-compact domains , 2008 .

[5]  J. Graef,et al.  First order impulsive differential inclusions with periodic conditions , 2008 .

[6]  A. Cernea A Filippov type existence theorem for a class of second-order differential inclusions. , 2008 .

[7]  Abdelghani Ouahab,et al.  Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay , 2007 .

[8]  T. Cardinali,et al.  On the existence of mild solutions of semilinear evolution differential inclusions , 2005 .

[9]  Abdelghani Ouahab,et al.  Controllability results for impulsive functional differential inclusions , 2004 .

[10]  A. Tolstonogov Properties of Attainable Sets of Evolution Inclusions and Control Systems of Subdifferential Type , 2004 .

[11]  S. Sudoplatov Inessential Combinations and Colorings of Models , 2003 .

[12]  Jan Andres,et al.  Topological Fixed Point Principles for Boundary Value Problems , 2003 .

[13]  A. Tolstonogov Approximation of Attainable Sets of an Evolution Inclusion of Subdifferential Type , 2003 .

[14]  J. Nieto Periodic boundary value problems for first-order impulsive ordinary differential equations , 2002 .

[15]  P. Rubbioni,et al.  Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay , 2002 .

[16]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[17]  S. Yau Mathematics and its applications , 2002 .

[18]  Juan J. Nieto,et al.  Impulsive resonance periodic problems of first order , 2002, Appl. Math. Lett..

[19]  Nonlinear Parametric Evolution Inclusions , 2002 .

[20]  Lech Górniewicz,et al.  Topological structure of solution sets: current results , 2000 .

[21]  G. L. Acedo,et al.  Measures of Noncompactness in Metric Fixed Point Theory , 1997 .

[22]  Shouchuan Hu,et al.  Handbook of Multivalued Analysis: Volume I: Theory , 1997 .

[23]  J. Andres On the multivalued Poincaré operators , 1997 .

[24]  Dong Yujun Periodic Boundary Value Problems for Functional Differential Equations with Impulses , 1997 .

[25]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[26]  Nikolaos S. Papageorgiou,et al.  On the properties of the solution set of semilinear evolution inclusions , 1995 .

[27]  Topological properties of the solution set of integrodifferential inclusions , 1995 .

[28]  Urs Kirchgraber,et al.  Dynamics Reported : Expositions in Dynamical Systems , 1994 .

[29]  R. Anderson,et al.  Pulse mass measles vaccination across age cohorts. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Rodkina,et al.  Measures of noncompactness and condensing operators , 1992 .

[31]  L. Górniewicz,et al.  Topological Approach to Differential Inclusions on Closed Subset of ℝn , 1992 .

[32]  Qianyu Zhu On the solution set of differential inclusions in Banach space , 1991 .

[33]  M. Kisielewicz Differential Inclusions and Optimal Control , 1991 .

[34]  H. Frankowska,et al.  A priori estimates for operational differential inclusions , 1990 .

[35]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[36]  Alberto Bressan,et al.  Extensions and selections of maps with decomposable values , 1988 .

[37]  A. A. Tolstonogov,et al.  Di erential Inclusions in a Banach Space , 2010 .

[38]  Lech Górniewicz,et al.  On the solution sets of differential inclusions , 1986 .

[39]  T. Pruszko Some applications of the topological degree theory to multi-valued boundary value problems , 1984 .

[40]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[41]  J. Lasry,et al.  Periodic solutions of functional differential inclusions and fixed points of σ-selectionable correspondences , 1983 .

[42]  A. Fryszkowski Continuous selections for a class of non-convex multivalued maps , 1983 .

[43]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[44]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[45]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[46]  L. Górniewicz Homological methods in fixed-point theory of multi-valued maps , 1976 .

[47]  S. Nadler,et al.  Multi-valued contraction mappings in generalized metric spaces , 1970 .

[48]  A. F. Filippov Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .

[49]  Karol Borsuk,et al.  Theory Of Retracts , 1967 .

[50]  E. Krüger-Thiemer,et al.  Formal theory of drug dosage regimens. I , 1966 .

[51]  P. J. Davis,et al.  Introduction to functional analysis , 1958 .

[52]  E. Hille Functional Analysis And Semi-Groups , 1948 .