On Optimal Sparse-Control Problems Governed by Jump-Diffusion Processes

A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.

[1]  Alfio Borzì,et al.  A Fokker-Planck control framework for multidimensional stochastic processes , 2013, J. Comput. Appl. Math..

[2]  Z. Schuss Theory and Applications of Stochastic Processes: An Analytical Approach , 2009 .

[3]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[4]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[5]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[6]  Alfio Borzì,et al.  Analysis of splitting methods for solving a partial integro-differential Fokker-Planck equation , 2017, Appl. Math. Comput..

[7]  D. Stroock Markov Processes from K. Ito's Perspective (AM-155) , 2003 .

[8]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[9]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[10]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[11]  Alfio Borzì,et al.  Analysis of the Chang–Cooper discretization scheme for a class of Fokker–Planck equations , 2015, J. Num. Math..

[12]  D. Stroock Markov processes from K. Itô's perspective , 2003 .

[13]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[14]  Maria Giovanna Garroni,et al.  Green Functions for Second Order Parabolic Integro-Differential Problems , 1993 .

[15]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[16]  William E. Schiesser The numerical method of lines , 1991 .

[17]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[18]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[19]  Huyen Pham,et al.  Continuous-time stochastic control and optimization with financial applications / Huyen Pham , 2009 .

[20]  J. Geiser Decomposition Methods for Differential Equations: Theory and Applications , 2009 .

[21]  J. Harrison,et al.  A stochastic calculus model of continuous trading: Complete markets , 1983 .

[22]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[23]  Alfio Borzì,et al.  A Fokker–Planck Feedback Control-Constrained Approach for Modelling Crowd Motion , 2016 .

[24]  Simon Jäger,et al.  Parameter estimation for forward Kolmogorov equation with application to nonlinear exchange rate dynamics , 2005 .

[25]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[26]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[27]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[28]  Alfio Borzì,et al.  Proximal schemes for parabolic optimal control problems with sparsity promoting cost functionals , 2017, Int. J. Control.

[29]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[30]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[31]  A. Borzì,et al.  Optimal control of probability density functions of stochastic processes , 2010 .

[32]  A. Pascucci PDE and Martingale Methods in Option Pricing , 2010 .

[33]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[34]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[35]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[36]  A. Addou,et al.  Existence and Uniqueness of Optimal Control for a Distributed-Parameter Bilinear System , 2002 .

[37]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[38]  Alfio Borzì,et al.  Proximal Methods for Elliptic Optimal Control Problems with Sparsity Cost Functional , 2016 .

[39]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[40]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[41]  Kazufumi Ito,et al.  Optimal Control Formulation for Determining Optical Flow , 2002, SIAM J. Sci. Comput..

[42]  Alfio Borzì,et al.  Second-order approximation and fast multigrid solution of parabolic bilinear optimization problems , 2015, Adv. Comput. Math..