Modeling and scientific computing for the transmission dynamics of Avian influenza with half-saturated incidence

This paper presents the mathematical analysis of the dynamical system for avian influenza. The proposed model considers a nonlinear dynamical model of birds and human. The half-saturated incidence ...

[1]  James S. Muldowney,et al.  A Geometric Approach to Global-Stability Problems , 1996 .

[2]  Abba B. Gumel,et al.  Global dynamics of a two-strain avian influenza model , 2009, Int. J. Comput. Math..

[3]  Huaiping Zhu,et al.  A mathematical model for assessing control strategies against West Nile virus , 2005, Bulletin of mathematical biology.

[4]  Shujing Gao,et al.  Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. , 2006, Vaccine.

[5]  C. Castillo-Chavez,et al.  Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction , 2002 .

[6]  Murray E. Alexander,et al.  A Delay Differential Model for Pandemic Influenza with Antiviral Treatment , 2007, Bulletin of mathematical biology.

[7]  Abdelilah Kaddar,et al.  Stability analysis in a delayed SIR epidemic model with a saturated incidence rate , 2010 .

[8]  Xianning Liu,et al.  Avian-human influenza epidemic model. , 2007, Mathematical biosciences.

[9]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[10]  A. Nizam,et al.  Containing pandemic influenza with antiviral agents. , 2004, American journal of epidemiology.

[11]  Feng Zhang,et al.  Global stability of an SIR epidemic model with constant infectious period , 2008, Appl. Math. Comput..

[12]  Jean M. Tchuenche,et al.  A mathematical model of avian influenza with half-saturated incidence , 2013, Theory in Biosciences.

[13]  C. Stuart-harris,et al.  Epidemiology of influenza in man. , 1979, British medical bulletin.

[14]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[15]  James Watmough,et al.  An sveir model for assessing potential impact of an imperfect anti-sars vaccine. , 2006, Mathematical biosciences and engineering : MBE.

[16]  B. Buonomo,et al.  Global stability for an HIV-1 infection model including an eclipse stage of infected cells , 2011, Journal of Mathematical Analysis and Applications.

[17]  M. E. Alexander,et al.  A Vaccination Model for Transmission Dynamics of Influenza , 2004, SIAM J. Appl. Dyn. Syst..

[18]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[19]  Xingbo Liu,et al.  Stability analysis of an SEIQV epidemic model with saturated incidence rate , 2012 .

[20]  Robert H. Martin Logarithmic norms and projections applied to linear differential systems , 1974 .

[21]  A. Gumel,et al.  Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands , 2007, Journal of The Royal Society Interface.

[22]  J. Hyman,et al.  Transmission Dynamics of the Great Influenza Pandemic of 1918 in Geneva, Switzerland: Assessing the Effects of Hypothetical Interventions , 2022 .

[23]  E. D. Kilbourne Influenza Pandemics of the 20th Century , 2006, Emerging infectious diseases.

[24]  K. Hattaf,et al.  A class of delayed viral infection models with general incidence rate and adaptive immune response , 2016 .

[25]  Yann Le Strat,et al.  Influenza pandemic preparedness in France: modelling the impact of interventions , 2006, Journal of Epidemiology and Community Health.