Simulating the evolution of soot mixing state with a particle-resolved aerosol model

[1] The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity, and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach tracks the evolution of the mixing state of particles due to emission, dilution, condensation, and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved high computational efficiency for situations when the coagulation kernel is highly nonuniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contributed to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in sectional or modal aerosol models.

[1]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[2]  Karl Sabelfeld,et al.  Stochastic particle methods for Smoluchowski coagulation equation: variance reduction and error estimations , 2003, Monte Carlo Methods Appl..

[3]  J. Hansen,et al.  Soot climate forcing via snow and ice albedos. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Costa,et al.  Soluble transition metals mediate residual oil fly ash induced acute lung injury. , 1997, Journal of toxicology and environmental health.

[5]  T. Bond,et al.  Limitations in the enhancement of visible light absorption due to mixing state , 2006 .

[6]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[7]  B. Vogel,et al.  Modeling aerosols on the mesoscale‐γ: Treatment of soot aerosol and its radiative effects , 2003 .

[8]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[9]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[10]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[11]  Chester W. Spicer,et al.  Ozone production efficiency and NOx depletion in an urban plume: Interpretation of field observations and implications for evaluating O3‐NOx‐VOC sensitivity , 2003 .

[12]  Babovsky Hans On a Monte Carlo scheme for Smoluchowski’s coagulation equation , 1999 .

[13]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[14]  Linda R. Petzold,et al.  Stochastic Modeling of Gene Regulatory Networks y , 2005 .

[15]  U. Lohmann,et al.  A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing , 2002 .

[16]  G. Raga,et al.  Monte Carlo simulations of two-component drop growth by stochastic coalescence , 2008 .

[17]  A. Wexler,et al.  Modeling the number distributions of urban and regional aerosols: theoretical foundations , 2002 .

[18]  G. Cass,et al.  Effect of emissions control programs on visibility in southern California. , 2001, Environmental science & technology.

[19]  David B. Kittelson,et al.  On-road and laboratory evaluation of combustion aerosols-Part1: Summary of diesel engine results , 2006 .

[20]  M. Jacobson Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions , 2002 .

[21]  John H. Seinfeld,et al.  Climate response of direct radiative forcing of anthropogenic black carbon , 2005 .

[22]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[23]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[24]  Anthony S. Wexler,et al.  Modelling urban and regional aerosols—I. model development , 1994 .

[25]  D. Rivin,et al.  Particulate carbon and other components of soot and carbon black , 1982 .

[26]  Jonathan O. Allen,et al.  Evaluation of an air quality model for the size and composition of source-oriented particle classes. , 2002, Environmental science & technology.

[27]  Mark Z. Jacobson,et al.  Fundamentals of atmospheric modeling , 1998 .

[28]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[29]  Andreas Eibeck,et al.  Stochastic Particle Approximations for Smoluchoski’s Coagualtion Equation , 2001 .

[30]  Monte Carlo results for random coagulation , 1985 .

[31]  U. Lohmann,et al.  Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model , 2005 .

[32]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[33]  Ruprecht Jaenicke,et al.  Chapter 1 Tropospheric Aerosols , 1993 .

[34]  M. Kleeman,et al.  Source apportionment of visibility impairment using a three-dimensional source-oriented air quality model. , 2004, Environmental science & technology.

[35]  A study of the aerosol of Santiago de Chile—II. Mass extinction coefficients, visibilities and Ångström exponents , 1993 .

[36]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 2. Cloud microphysics , 2002 .

[37]  M. Andreae,et al.  Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols , 2006 .

[38]  E. Feil,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002 .

[39]  Guiaș Flavius A Monte Carlo approach to the Smoluchowski equations , 1997 .

[40]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[41]  Scott L. Diamond,et al.  A General Algorithm for Exact Simulation of Multicomponent Aggregation Processes , 2002 .

[42]  Kimberly A. Prather,et al.  The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties , 2008 .

[43]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[44]  H. Burtscher,et al.  Hygroscopic properties of carbon and diesel soot particles , 1997 .

[45]  M. Jacobson A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols , 2000 .

[46]  J. Wilson,et al.  A modeling study of global mixed aerosol fields , 2001 .

[47]  Benjamin Jourdain,et al.  A stochastic approach for the numerical simulation of the general dynamics equation for aerosols , 2003 .

[48]  G. Cass,et al.  Modeling the airborne particle complex as a source-oriented external mixture , 1997 .

[49]  Y. Efendiev,et al.  Hybrid monte carlo method for simulation of two-component aerosol coagulation and phase segregation. , 2002, Journal of colloid and interface science.

[50]  J. Brock,et al.  Formation and growth of binary aerosol in a laminar coaxial jet , 1988 .

[51]  F. Einar Kruis,et al.  Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems , 2004 .

[52]  Michael J. Kleeman,et al.  SIZE AND COMPOSITION DISTRIBUTION OF FINE PARTICULATE MATTER EMITTED FROM MOTOR VEHICLES , 2000 .

[53]  K. Prather,et al.  Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment , 2007 .

[54]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[55]  Flavius Guias A Monte Carlo approach to the Smoluchowski equations , 1997, Monte Carlo Methods Appl..

[56]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[57]  M. Hoffmann,et al.  Redox chemistry of iron in fog and stratus clouds , 1993 .

[58]  M. Jacobson Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming , 2002 .

[59]  Markus Kraft,et al.  A new method for calculating the diameters of partially-sintered nanoparticles and its effect on simulated particle properties , 2006 .

[60]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[61]  K. Prather,et al.  Using ATOFMS to Determine OC/EC Mass Fractions in Particles , 2006 .

[62]  Kostas Tsigaridis,et al.  Atmospheric Chemistry and Physics Global Modelling of Secondary Organic Aerosol in the Troposphere: a Sensitivity Analysis , 2003 .

[63]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[64]  M. Jacobson Development and application of a new air pollution modeling system—II. Aerosol module structure and design , 1997 .

[65]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[66]  H. Horvath,et al.  A study of the aerosol of Santiago de Chile. I: Light extinction coefficients , 1993 .

[67]  Penner,et al.  Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon , 1994 .

[68]  Andreas Bott,et al.  A Flux Method for the Numerical Solution of the Stochastic Collection Equation , 1998 .

[69]  Qi Ying,et al.  Source contributions to the regional distribution of secondary particulate matter in California , 2006 .

[70]  Leonard K. Peters,et al.  A new lumped structure photochemical mechanism for large‐scale applications , 1999 .

[71]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[72]  Robert McGraw,et al.  Representation of generally mixed multivariate aerosols by the quadrature method of moments: I. Statistical foundation , 2004 .

[73]  M. Andreae,et al.  Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols , 1986, Science.

[74]  Anthony S. Wexler,et al.  Numerical schemes to model condensation and evaporation of aerosols , 1996 .

[75]  K. Suhre,et al.  Internal and external mixing in atmospheric aerosols by coagulation: Impact on the optical and hygroscopic properties of the sulphate-soot system , 1997 .

[76]  I. J. Ackermann,et al.  Modeling the formation of secondary organic aerosol within a comprehensive air quality model system , 2001 .

[77]  Linda R. Petzold,et al.  Stochastic modelling of gene regulatory networks , 2005 .

[78]  Alejandro L. Garcia,et al.  A Monte Carlo simulation of coagulation , 1987 .

[79]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[80]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[81]  P. Chylek,et al.  Effect of black carbon on the optical properties and climate forcing of sulfate aerosols , 1995 .

[82]  David F Anderson,et al.  A modified next reaction method for simulating chemical systems with time dependent propensities and delays. , 2007, The Journal of chemical physics.

[83]  Daniel T. Gillespie,et al.  The Stochastic Coalescence Model for Cloud Droplet Growth. , 1972 .

[84]  Antony D. Clarke,et al.  Soot in the Arctic snowpack: a cause for perturbations in radiative transfer , 1985 .

[85]  F. Einar Kruis,et al.  Direct simulation Monte Carlo method for particle coagulation and aggregation , 2000 .

[86]  Daniel T. Gillespie,et al.  An Exact Method for Numerically Simulating the Stochastic Coalescence Process in a Cloud , 1975 .

[87]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[88]  Jerome D. Fast,et al.  Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) , 2008 .

[89]  M. Molina,et al.  A User’s Reference , 2022 .

[90]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[91]  Heinz Burtscher,et al.  Characterization of particles in combustion engine exhaust , 1998 .

[92]  B. Wehner,et al.  Absorption amplification of black carbon internally mixed with secondary organic aerosol , 2005 .

[93]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[94]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[95]  W. K. George,et al.  University of Illinois at Urbana-Champain , 1997 .

[96]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[97]  D. Gillespie,et al.  Stochastic Modeling of Gene Regulatory Networks † , 2005 .

[98]  M. Smoluchowski,et al.  Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .

[99]  Robert McGraw,et al.  Representation of generally mixed multivariate aerosols by the quadrature method of moments: II. Aerosol dynamics , 2004 .

[100]  Matthew West,et al.  Aerosol dynamics using the quadrature method of moments: comparing several quadrature schemes with particle-resolved simulation , 2008 .

[101]  David B. Kittelson,et al.  On-road and laboratory evaluation of combustion aerosols—Part 2:: Summary of spark ignition engine results , 2006 .

[102]  R. Hitzenberger,et al.  Mixing properties of individual submicrometer aerosol particles in Vienna , 2001 .

[103]  Michael J. Kleeman,et al.  Source contributions to the size and composition distribution of urban particulate air pollution , 1998 .

[104]  Hans Babovsky,et al.  On a Monte Carlo scheme for Smoluchowski’s coagulation equation , 1999, Monte Carlo Methods Appl..

[105]  Pratim Biswas,et al.  Study of Numerical Diffusion in a Discrete-Sectional Model and Its Application to Aerosol Dynamics Simulation , 1998 .

[106]  Michael J Kleeman,et al.  Size and Composition Distributions of Particulate Matter Emissions: Part 2—Heavy-Duty Diesel Vehicles , 2007, Journal of the Air & Waste Management Association.

[107]  H. Cachier,et al.  Particulate carbon content in rain at various temperate and tropical locations , 1992 .

[108]  K. Prather,et al.  Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. , 2006, Environmental science & technology.

[109]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[110]  Leonard K. Peters,et al.  A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA) , 2005 .

[111]  G. Cass,et al.  Source-oriented model for air pollutant effects on visibility , 1996 .

[112]  L. S. Hughes,et al.  Source Contributions to the Size and Composition Distribution of Atmospheric Particles: Southern California in September 1996 , 1999 .

[113]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[114]  B. Vogel,et al.  The loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on soot aerosol: A chamber and modeling study , 2001 .

[115]  E. Roeckner,et al.  Impact of carbonaceous aerosol emissions on regional climate change , 2006 .

[116]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .