Large-Scale Mapping of Small Roads in Lidar Images Using Deep Convolutional Neural Networks

Detailed and complete mapping of forest roads is important for the forest industry since they are used for timber transport by trucks with long trailers. This paper proposes a new automatic method for large-scale mapping forest roads from airborne laser scanning data. The method is based on a fully convolutional neural network that performs end-to-end segmentation. To train the network, a large set of image patches with corresponding road label information are applied. The final network is then applied to detect and map forest roads from lidar data covering the Etnedal municipality in Norway. The results show that we are able to map the forest roads with an overall accuracy of 97.2%. We conclude that the method has a strong potential for large-scale operational mapping of forest roads.

[1]  Arnt-Borre Salberg,et al.  Detection of seals in remote sensing images using features extracted from deep convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[2]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[3]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[4]  Alexandre Boulch,et al.  Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[5]  Jamie Sherrah,et al.  Effective semantic pixel labelling with convolutional networks and Conditional Random Fields , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[6]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[7]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[8]  Nan Yang,et al.  A review of road extraction from remote sensing images , 2016 .

[9]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Camille Couprie,et al.  Learning Hierarchical Features for Scene Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Michael Kampffmeyer,et al.  Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[12]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Geoffrey E. Hinton,et al.  Learning to Detect Roads in High-Resolution Aerial Images , 2010, ECCV.

[14]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  C. Mallet,et al.  Large-scale road detection in forested mountainous areas using airborne topographic lidar data , 2016 .

[16]  Ghassan Hamarneh,et al.  Topology Aware Fully Convolutional Networks for Histology Gland Segmentation , 2016, MICCAI.

[17]  Jefersson Alex dos Santos,et al.  Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[18]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .