Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp

Adaptive motor behavior requires efficient error detection and correction. The posterior parietal cortex is critical for on-line control of reach-to-grasp movements. Here we show a causal relationship between disruption of cortical activity within the anterior intraparietal sulcus (aIPS) by transcranial magnetic stimulation (TMS) and disruption of goal-directed prehensile actions (either grip size or forearm rotation, depending on the task goal, with reaching preserved in either case). Deficits were elicited by applying TMS within 65 ms after object perturbation, which attributes a rapid control process on the basis of visual feedback to aIPS. No aperture deficits were produced when TMS was applied to a more caudal region within the intraparietal sulcus, to the parieto-occipital complex (putative V6, V6A) or to the hand area of primary motor cortex. We contend that aIPS is critical for dynamic error detection during goal-dependent reach-to-grasp action that is visually guided.

[1]  L. Maffei,et al.  I. Neurophysiological evidence , 1982 .

[2]  M. Jeannerod,et al.  Selective perturbation of visual input during prehension movements , 2004, Experimental Brain Research.

[3]  M. Jeannerod,et al.  Coordination mechanisms in prehension movements , 1992 .

[4]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[5]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[6]  H. Sakata,et al.  Parietal neurons related to memory-guided hand manipulation. , 1996, Journal of neurophysiology.

[7]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[8]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[9]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[10]  K Tsutsui,et al.  Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[12]  Scott T. Grafton,et al.  Involvement of visual cortex in tactile discrimination of orientation , 1999, Nature.

[13]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[14]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[15]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[16]  A. Simeone,et al.  The TINS Lecture Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis , 1999, Trends in Neurosciences.

[17]  H. Sakata,et al.  Neural representation of three-dimensional features of manipulation objects with stereopsis , 1999, Experimental Brain Research.

[18]  R. Shadmehr,et al.  Motor disorder in Huntington's disease begins as a dysfunction in error feedback control , 2000, Nature.

[19]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[20]  M. Desmurget,et al.  An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia , 2000, Nature Neuroscience.

[21]  T Landis,et al.  Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. , 2000, Cerebral cortex.

[22]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[23]  Richard B Buxton,et al.  Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas , 2001, Vision Research.

[24]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[25]  C. Büchel,et al.  Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. , 2001, Journal of neurophysiology.

[26]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[27]  S. Sherlock,et al.  Anatomy and Function , 2001 .

[28]  C. Galletti,et al.  Effects of lesions to area V6A in monkeys , 2002, Experimental Brain Research.

[29]  Scott T. Grafton,et al.  A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements , 2002, Neuropsychologia.

[30]  Scott T. Grafton,et al.  Selective Activation of a Parietofrontal Circuit during Implicitly Imagined Prehension , 2002, NeuroImage.

[31]  Thomas F Münte,et al.  Time Course of Error Detection and Correction in Humans: Neurophysiological Evidence , 2002, The Journal of Neuroscience.

[32]  Norihiro Sadato,et al.  Tactile-visual cross-modal shape matching: a functional MRI study. , 2003, Brain research. Cognitive brain research.

[33]  Scott T Grafton,et al.  From 'acting on' to 'acting with': the functional anatomy of object-oriented action schemata. , 2003, Progress in brain research.

[34]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[35]  C. Galletti,et al.  Role of the medial parieto-occipital cortex in the control of reaching and grasping movements , 2003, Experimental Brain Research.

[36]  Volkmar Glauche,et al.  Functional properties and interaction of the anterior and posterior intraparietal areas in humans , 2003, The European journal of neuroscience.

[37]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[38]  R. Andersen,et al.  Sensorimotor integration in posterior parietal cortex. , 2003, Advances in neurology.

[39]  U. Castiello,et al.  Reach to grasp: the natural response to perturbation of object size , 2004, Experimental Brain Research.

[40]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[41]  M. Desmurget,et al.  On-line motor control in patients with Parkinson's disease. , 2004, Brain : a journal of neurology.

[42]  Joël Monzée,et al.  Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. , 2004, Journal of neurophysiology.

[43]  A. G. Feldman,et al.  Deficits in rapid adjustments of movements according to task constraints in Parkinson's disease , 2004, Movement disorders : official journal of the Movement Disorder Society.

[44]  D. Ostry,et al.  Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics , 2004, The Journal of Neuroscience.

[45]  H. Poizner,et al.  Deficits in adaptive upper limb control in response to trunk perturbations in Parkinson’s disease , 2004, Experimental Brain Research.

[46]  M. Jeannerod,et al.  Selective perturbation of visual input during prehension movements , 1991, Experimental Brain Research.

[47]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[48]  Matthew F. S. Rushworth,et al.  Parietal rTMS Disrupts the Initiation but not the Execution of On-line Adjustments to a Perturbation of Object Size , 2005, Journal of Cognitive Neuroscience.

[49]  Dottie M. Clower,et al.  Basal ganglia and cerebellar inputs to 'AIP'. , 2005, Cerebral cortex.

[50]  R. K. Simpson Nature Neuroscience , 2022 .