Convenient Synthesis of 3,4-Dichloro-5-hydroxy-2(5H)-Furanone Glycoconjugates

3,4-Dichloro-5-hydroxy-2(5H)-furanone treated with methyl chloroformate in the presence of diisopropylethylamine (Hünig’s base) gave the corresponding carbonate. The labile methoxycarbonyloxy group smoothly undergoes substitution by amino alcohols. The obtained 5-(ω-hydroxyalkylamino) mucochloric acid derivatives reacted with peracetylated glucals using triphenylphosphine hydrobromide as a catalyst to give the title muchloric acid glycoconjugates.

[1]  K. Walczak,et al.  Synthesis and preliminary bioactivity assays of 3,4-dichloro-5-(omega-hydroxyalkylamino)-2(5H)-furanones. , 2010, European journal of medicinal chemistry.

[2]  K. Walczak,et al.  The use of tri-O-acetyl-D-glucal and -D-galactal in the synthesis of omega-aminoalkyl 2-deoxy- and 2,3-dideoxy-d-hexopyranosides. , 2008, Carbohydrate research.

[3]  A. Kurbangalieva,et al.  Synthesis of Novel Arylthio Derivatives of Mucochloric Acid , 2007 .

[4]  Ji Zhang,et al.  Amino Acid Esters and Amides for Reductive Amination of Mucochloric Acid: Synthesis of Novel γ‐Lactams, Short Peptides and Antiseizure Agent Levetiracetam (Keppra®) , 2006 .

[5]  G. Collingridge,et al.  Structure-activity relationship studies on N3-substituted willardiine derivatives acting as AMPA or kainate receptor antagonists. , 2006, Journal of medicinal chemistry.

[6]  P. Miniyar,et al.  Biological and medicinal significance of pyrimidines , 2006 .

[7]  D. Belmont,et al.  Efficient Synthesis of Novel γ-Substituted γ-Butenolides by Lewis Acid Catalyzed Addition of Metal Enolates of Active Methylene Compounds to Mucohalic Acids , 2005 .

[8]  D. Belmont,et al.  Mucohalic acid in Lewis acid catalyzed Mukaiyama aldol reaction: a concise method for highly functionalized γ-substituted γ-butenolides , 2005 .

[9]  N. Sattayasai,et al.  Synthesis and antibacterial activities of 5-hydroxy-4-amino-2(5H)-furanones. , 2005, Bioorganic & medicinal chemistry letters.

[10]  M. Tisdale,et al.  Cytotoxicity of 3,4‐dihalogenated 2(5H)‐furanones , 2004, The Journal of pharmacy and pharmacology.

[11]  R. Rossi,et al.  Mucochloric and Mucobromic Acids: Inexpensive, Highly Functionalised Starting Materials for the Selective Synthesis of Variously Substituted 2(5H)-Furanone Derivatives, Sulfur- or Nitrogen-Containing Heterocycles and Stereodefined Acyclic Unsaturated Dihalogenated Compounds , 2004 .

[12]  D. Belmont,et al.  Further Utilization of Mucohalic Acids: Palladium-Free, Regioselective Etherification and Amination of α,β-Dihalo γ-Methoxycarbonyloxy and γ-Acetoxy Butenolides , 2003 .

[13]  H. Berven,et al.  Metal‐Mediated Allylation of Mucohalic Acids: Facile Formation of γ‐Allylic α,β‐Unsaturated γ‐Butyrolactones. , 2003 .

[14]  C. Anselmi,et al.  Mucochloric Acid: A Useful Synthon for the Selective Synthesis of 4‐Aryl‐3‐chloro‐2(5H)‐furanones, (Z)‐4‐Aryl‐5‐[1‐(aryl)methylidene]‐3‐chloro‐2(5H)‐furanones and 3,4‐Diaryl‐2(5H)‐furanones. , 2003 .

[15]  M. Tisdale,et al.  Synthesis and evaluation of 5‐arylated 2(5H)‐furanones and 2‐arylated pyridazin‐3(2H)‐ones as anti‐cancer agents , 2003, The Journal of pharmacy and pharmacology.

[16]  H. Berven,et al.  Metal-mediated allylation of mucohalic acids: facile formation of γ-allylic α,β-unsaturated γ-butyrolactones ☆ , 2003 .

[17]  Peter G. Blazecka,et al.  First Direct Reductive Amination of Mucochloric Acid: A Simple and Efficient Method for Preparing Highly Functionalized α,β-Unsaturated γ-Butyrolactams. , 2003 .

[18]  D. Belmont,et al.  Reinvestigation of Mucohalic Acids, Versatile and Useful Building Blocks for Highly Functionalized α,β‐Unsaturated γ‐Butyrolactones. , 2003 .

[19]  S. Naranjo,et al.  New Rubrolides from the Ascidian Synoicum blochmanni , 2000 .

[20]  G. Sulikowski,et al.  Investigations into a biomimetic approach toward CP-225,917 and CP-263,114. , 2000, Journal of Organic Chemistry.

[21]  E. Sotelo,et al.  Pyridazines. Part 15. Synthesis of 6-Aryl-5-amino-3(2H)-pyridazinones as Potential Platelet Aggregation Inhibitors. , 1999 .

[22]  E. Sotelo,et al.  PYRIDAZINES. XV. SYNTHESIS OF 6-ARYL-5-AMINO-3(2H)-PYRIDAZINONES AS POTENTIAL PLATELET AGGREGATION INHIBITORS , 1998 .

[23]  R. Sjöholm,et al.  Reaction of mucochloric and mucobromic acids with adenosine and cytidine: formation of chloro- and bromopropenal derivatives. , 1996, Chemical research in toxicology.

[24]  J. Vatèle,et al.  Concise Total Synthesis of (+)‐Goniofufurone and Goniobutenolides A and B. , 1996 .

[25]  R. Sjöholm,et al.  Reaction of mucochloric acid with adenosine: formation of 8-(N6-adenosinyl)ethenoadenosine derivatives. , 1995, Chemical research in toxicology.

[26]  R. Andersen,et al.  Rubrolides A-H, metabolites of the colonial tunicate Ritterella rubra , 1991 .

[27]  J. Falck,et al.  Direct Preparation of 2‐Deoxy‐D‐glucopyranosides from Glucals without Ferrier Rearrangement. , 1991 .

[28]  W. Duczek,et al.  Chemistry of Mucohalic Acids. Part 4. Reactions of Mucochloric Acid Derivatives with Aniline. , 1990 .

[29]  W. Duczek,et al.  Zur Chemie der Mucohalogensäuren. IV. Reaktionen von Mucochlorsäurederivaten mit Anilin , 1990 .

[30]  H. W. Moore,et al.  PHOTOLYSIS OF 4-DIAZOPYRROLIDINE-2,3-DIONES. A NEW SYNTHETIC ROUTE TO MONO- AND BICYCLIC β-LACTAMS , 1984 .

[31]  H. W. Moore,et al.  Photolysis of 4-diazopyrrolidine-2,3-diones. A new synthetic route to mono- and bicyclic .beta.-lactams , 1983 .

[32]  D. T. Mowry Mucochloric Acid. I. Reactions of the Pseudo Acid Group , 1950 .