An optimal a posteriori error estimates of the local discontinuous galerkin method for the Second-Order wave equation in one space dimension

Abstract. In this paper, we provide the optimal convergence rate of a posteriori error estimates for the local discontinuous Galerkin (LDG) method for the second-order wave equation in one space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence result in [W. Cao, D. Li and Z. Zhang, Commun. Comput. Phys. 21 (1) (2017) 211-236]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh refinement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. We use these results to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. These new results enable us to construct residual-based a posteriori error estimates of the spatial errors. We further prove that, for smooth solutions, these a posteriori LDG error estimates converge, at a fixed time, to the true spatial errors in the L-norm at O(h) rate. Finally, we show that the global effectivity indices in the L-norm converge to unity at O(h) rate. The current results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using P p polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.

[1]  Paul Castillo,et al.  A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems , 2006 .

[2]  Haihang You,et al.  Adaptive Discontinuous Galerkin Finite Element Methods , 2009 .

[3]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[4]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[5]  Mahboub Baccouch,et al.  A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids , 2014, Comput. Math. Appl..

[6]  Mahboub Baccouch,et al.  A Superconvergent Local Discontinuous Galerkin Method for Elliptic Problems , 2012, J. Sci. Comput..

[7]  Mahboub Baccouch,et al.  Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems , 2014, Appl. Math. Comput..

[8]  Boying Wu,et al.  Superconvergence of Discontinuous Galerkin Methods for Scalar Nonlinear Conservation Laws in One Space Dimension , 2012, SIAM J. Numer. Anal..

[9]  Chi-Wang,et al.  ANALYSIS OF SHARP SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS , 2015 .

[10]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[11]  Fatih Celiker,et al.  Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension , 2007, Math. Comput..

[12]  Paul Castillo,et al.  A superconvergence result for discontinuous Galerkin methods applied to elliptic problems , 2003 .

[13]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[14]  Chi-Wang Shu,et al.  Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension , 2010, SIAM J. Numer. Anal..

[15]  Mahboub Baccouch Superconvergence of the local discontinuous galerkin method applied to the one‐dimensional second‐order wave equation , 2014 .

[16]  Mahboub Baccouch,et al.  The Local Discontinuous Galerkin Method for the Fourth-Order Euler–Bernoulli Partial Differential Equation in One Space Dimension. Part II: A Posteriori Error Estimation , 2013, Journal of Scientific Computing.

[17]  Zhimin Zhang,et al.  Optimal Superconvergence of Energy Conserving Local Discontinuous Galerkin Methods for Wave Equations , 2017 .

[18]  S. Adjerid,et al.  Superconvergence of the Local Discontinuous Galerkin Method Applied to Di usion Problems , 2022 .

[19]  Mahboub Baccouch,et al.  Asymptotically exact a posteriori local discontinuous Galerkin error estimates for the one‐dimensional second‐order wave equation , 2015 .

[20]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[21]  Chi-Wang Shu,et al.  Discontinuous Galerkin Method for Time-Dependent Problems: Survey and Recent Developments , 2014 .

[22]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[23]  Yulong Xing,et al.  Energy conserving local discontinuous Galerkin methods for wave propagation problems , 2013 .

[24]  Slimane Adjerid,et al.  Superconvergence of Discontinuous Finite Element Solutions for Transient Convection–diffusion Problems , 2005, J. Sci. Comput..

[25]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[26]  Mahboub Baccouch,et al.  A local discontinuous Galerkin method for the second-order wave equation , 2012 .

[27]  Waixiang Cao,et al.  Superconvergence of Local Discontinuous Galerkin methods for one-dimensional linear parabolic equations , 2014, Math. Comput..

[28]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[29]  Guido Kanschat,et al.  The local discontinuous Galerkin method for linearized incompressible fluid flow: a review , 2005 .

[30]  Bernardo Cockburn A Simple Introduction to Error Estimation for Nonlinear Hyperbolic Conservation Laws , 1999 .

[31]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[32]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[33]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[34]  Bernardo Cockburn,et al.  Error estimates for finite element methods for scalar conservation laws , 1996 .

[35]  Mahboub Baccouch,et al.  Superconvergence and a posteriori error estimates for the LDG method for convection-diffusion problems in one space dimension , 2014, Comput. Math. Appl..

[36]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[37]  Chi-Wang Shu,et al.  Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations , 2012, SIAM J. Numer. Anal..

[38]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[39]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.