Dendrite growth behavior in directionally solidified Fe–C–Mn–Al alloys

[1]  A. Mclean,et al.  Interfacial morphology evolution in directionally solidified FeCrAl alloys , 2018 .

[2]  A. Haldar,et al.  Current state of Fe-Mn-Al-C low density steels , 2017 .

[3]  Chang-jiang Song,et al.  A simple method to produce austenite-based low-density Fe–20Mn–9Al–0.75C steel by a near-rapid solidification process , 2017 .

[4]  J. Rezende,et al.  Comparison Between Segregation of High‐Manganese Steels from 2‐D Phase‐Field Simulations, 1‐D Analytical Theories, and Solidification Experiments , 2016 .

[5]  S. Michelic,et al.  Characterization and Analysis of Non‐Metallic Inclusions in Low‐Carbon Fe–Mn–Si–Al TWIP Steels , 2016 .

[6]  P. Lan,et al.  Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment , 2016, Metallurgical and Materials Transactions A.

[7]  Yang He,et al.  Determination of the liquidus and solidus temperatures of FeCrAl stainless steel , 2015, International Journal of Minerals, Metallurgy, and Materials.

[8]  Liwei Zhang,et al.  Influence of thermal stabilization treatment on the subsequent microstructure development during directional solidification of a Ti–46Al–5Nb alloy , 2015 .

[9]  Jian Yang,et al.  Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels , 2015, Metallurgical and Materials Transactions B.

[10]  C. Bernhard,et al.  Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations , 2013, Metallurgical and Materials Transactions A.

[11]  Liqing Chen,et al.  Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review , 2013, Acta Metallurgica Sinica (English Letters).

[12]  A. Yamanaka,et al.  Prediction of Solid-liquid Interfacial Energy of Steel during Solidification and Control of Dendrite Arm Spacing , 2012 .

[13]  Yan-qing Su,et al.  Peritectic reaction and its influences on the microstructures evolution during directional solidification of Fe–Ni alloys , 2008 .

[14]  Mustafa Gündüz,et al.  Directional solidification of aluminium -copper alloys , 2002 .

[15]  J. Miettinen Thermodynamic-kinetic simulation of constrained dendrite growth in steels , 2000 .

[16]  B. Thomas,et al.  Prediction of dendrite arm spacing for low alloy steel casting processes , 1996 .

[17]  Tokumatsu Suzuki Fundamentals of solidification phenomena , 1996, Journal of Japan Institute of Light Metals.

[18]  Wilfried Kurz,et al.  Solidification microstructures: A conceptual approach , 1994 .

[19]  B. Billia,et al.  Statistical analysis of the disorder of two-dimensional cellular arrays in directional solidification , 1991 .

[20]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[21]  J. J. Moore,et al.  Effect of thermal conditions and alloying constituents (Ni, Cr) on macrosegregation in continuously cast high-carbon (0.8 Pct), low-alloy steel , 1989 .

[22]  M. Taha Influence of solidification parameters on dendrite arm spacings in low carbon steels , 1986 .

[23]  R. Trivedi Interdendritic Spacing: Part II. A Comparison of Theory and Experiment , 1984 .

[24]  H. Fredriksson,et al.  Solidification of iron-base alloys , 1982 .

[25]  Martin E. Glicksman,et al.  Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth , 1981 .

[26]  Wilfried Kurz,et al.  Dendrite growth at the limit of stability: tip radius and spacing , 1981 .

[27]  K. Schwerdtfeger,et al.  Dendrite morphology of steady state unidirectionally solidified steel , 1976, Metallurgical and Materials Transactions A.

[28]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .