Shape feature extraction and description based on tensor scale

Tensor scale is a morphometric parameter that unifies the representation of local structure thickness, orientation, and anisotropy, which can be used in several computer vision and image processing tasks. In this article, we exploit this concept for binary images and propose a shape salience detector and a shape descriptor-Tensor Scale Descriptor with Influence Zones. It also introduces a robust method to compute tensor scale, using a graph-based approach-the Image Foresting Transform. Experimental results are provided, showing the effectiveness of the proposed methods, when compared to other relevant methods, such as Beam Angle Statistics and Contour Salience Descriptor, with regard to their use in content-based image retrieval tasks.

[1]  Punam K. Saha,et al.  A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale , 2004, Pattern Recognit..

[2]  Punam K. Saha,et al.  In vivo assessment of trabecular bone architecture via three-dimensional tensor scale , 2004, SPIE Medical Imaging.

[3]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[4]  Jayaram K. Udupa,et al.  Tensor scale-based image registration , 2003, SPIE Medical Imaging.

[5]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[6]  Ricardo da Silva Torres,et al.  Contour salience descriptors for effective image retrieval and analysis , 2007, Image Vis. Comput..

[7]  Jayaram K. Udupa,et al.  Tensor scale-based fuzzy connectedness image segmentation , 2003, SPIE Medical Imaging.

[8]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[9]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[10]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[11]  Ricardo da Silva Torres,et al.  TSD: A Shape Descriptor Based on a Distribution of Tensor Scale Local Orientation , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[12]  Luciano da Fontoura Costa,et al.  An integrated approach to shape analysis: results and perspectives , 2001 .

[13]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[15]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[16]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[17]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[19]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004 .

[20]  Punam K. Saha,et al.  Tensor scale: A local morphometric parameter with applications to computer vision and image processing , 2005, Comput. Vis. Image Underst..

[21]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.