Wind farm simulations using an overset hp-adaptive approach with blade-resolved turbine models

Blade-resolved numerical simulations of wind energy applications using full blade and tower models are presented. The computational methodology combines solution technologies in a multi-mesh, multi-solver paradigm through a dynamic overset framework. The coupling of a finite volume solver and a high-order, hp-adaptive finite element solver is utilized. Additional technologies including in-situ visualization and atmospheric microscale modeling are incorporated into the analysis environment. Validation of the computational framework is performed on the National Renewable Energy Laboratory (NREL) 5MW baseline wind turbine, the unsteady aerodynamics experimental NREL Phase VI turbine, and the Siemens SWT-2.3-93 wind turbine. The power and thrust results of all single turbine simulations agree well with low-fidelity model simulation results and field experiments when available. Scalability of the computational framework is demonstrated using 6, 12, 24, 48, and 96 wind turbine setups including the 48 turbine wind plant known as Lillgrund. The largest case consisting of 96 wind turbines and a total of 385 overset grids are run on 44,928 cores at a weak scaling efficiency of 86%. Demonstration of the coupling of atmospheric microscale and Computational Fluid Dynamics (CFD) solvers is presented using the National Center for Atmospheric Research (NCAR) Weather Research and Forecasting Model (WRF) solver and the NREL Simulator fOr Wind Farm Applications (SOWFA) solver.

[1]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[2]  Christopher Gundling,et al.  Comparison of Wind Turbine Wakes in Steady and Turbulent Inflow , 2012 .

[3]  Andrew M. Wissink,et al.  An Assessment of the Dual Mesh Paradigm Using Different Near-Body Solvers in Helios , 2017 .

[4]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[5]  Yuwei Li,et al.  Dynamic overset CFD simulations of wind turbine aerodynamics , 2012 .

[6]  Arnold Afb,et al.  Comparison of SU/PG and DG Finite-Element Techniques for the Compressible Navier-Stokes Equations on Anisotropic Unstructured Meshes , 2013 .

[7]  R. Flemming,et al.  Actuator Disc Methods Applied to Wind Turbines , 2016 .

[8]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[9]  Rainald Löhner,et al.  A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..

[10]  Timothy C. Warburton,et al.  Extreme-Scale AMR , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[11]  Freddie D. Witherden,et al.  PyFR: Next-Generation High-Order Computational Fluid Dynamics on Many-Core Hardware (Invited) , 2015 .

[12]  Stefano Leonardi,et al.  A large-eddy simulation of wind-plant aerodynamics , 2012 .

[13]  Krzysztof J. Fidkowski,et al.  Drag Prediction Using Adaptive Discontinuous Finite Elements , 2013 .

[14]  Dimitri J. Mavriplis,et al.  Unstructured Mesh Solution Techniques using the NSU3D Solver , 2014 .

[15]  Dimitri J. Mavriplis,et al.  An overset mesh approach for 3D mixed element high-order discretizations , 2015, J. Comput. Phys..

[16]  Krzysztof J. Fidkowski,et al.  A high-order discontinuous Galerkin multigrid solver for aerodynamic applications , 2004 .

[17]  W. K. Anderson,et al.  High-Order Finite-Element Method and Dynamic Adaptation for Two-Dimensional Laminar and Turbulent Navier-Stokes , 2014 .

[18]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[19]  Ralph Noack,et al.  SUGGAR: A General Capability for Moving Body Overset Grid Assembly , 2005 .

[20]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[21]  Earl P. N. Duque,et al.  Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment , 2003 .

[22]  R. Hartmann Higher-Order and Adaptive Discontinuous Galerkin Methods with Shock-Capturing Applied to Transonic Turbulent Delta Wing Flow , 2012 .

[23]  D. Mavriplis,et al.  Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor , 2009 .

[24]  Dimitri J. Mavriplis,et al.  An hp-Adaptive Discontinuous Galerkin Solver for Aerodynamic flows on Mixed-Element Meshes , 2011 .

[25]  P. Spalart,et al.  Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction , 2000 .

[26]  Torben Mikkelsen,et al.  Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment , 2016 .

[27]  Dimitri J. Mavriplis,et al.  3D Mixed Element Discontinuous Galerkin with Shock Capturing , 2013 .

[28]  Rajib Roy,et al.  Large Eddy Simulation of Wind Flow Over Complex Terrain: The Bolund Hill Case , 2017 .

[29]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[30]  George N. Barakos,et al.  Development and Validation of a CFD Technique for the Aerodynamic Analysis of HAWT , 2009 .

[31]  Jayanarayanan Sitaraman,et al.  Robust and efficient overset grid assembly for partitioned unstructured meshes , 2014, J. Comput. Phys..

[32]  Ulrich Schumann,et al.  Direct Numerical Simulation of Turbulent Velocity, Pressure, and Temperature Fields in Channel Flows , 1979 .

[33]  J. L. Steger,et al.  A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations] , 1983 .

[34]  Yong Su Jung,et al.  Unstructured/Structured Overset Methods for Flow Solver Using Hamiltonian Paths and Strand Grids , 2016 .

[35]  Scott Schreck,et al.  The NREL full-scale wind tunnel experiment Introduction to the special issue , 2002 .

[36]  Jayanarayanan Sitaraman,et al.  Prediction of Wind Turbine Performance and Wake Losses using Analysis Methods of Incremental Complexity , 2011 .

[37]  Constantine Bekas,et al.  An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[38]  Dimitri J. Mavriplis,et al.  An Overset Adaptive High-Order Approach for Blade-Resolved Wind Energy Applications , 2016 .

[39]  Dimitri J. Mavriplis,et al.  A Multi-Solver Overset Mesh Approach for 3D Mixed Element Variable Order Discretizations , 2016 .

[40]  Haiyang Gao,et al.  A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids , 2011 .

[41]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[42]  Kelly R. Laflin,et al.  CFL3D, FUN3D, and NSU3D Contributions to the Fifth Drag Prediction Workshop , 2013 .

[43]  Jonathan W. Naughton,et al.  A Study of the Sensitivity of Wind Turbine Response to Inflow Temporal and Spatial Resolution , 2012 .

[44]  A. Le Pape,et al.  3D Navier–Stokes computations of a stall‐regulated wind turbine , 2004 .

[45]  Paul Messina,et al.  The Exascale Computing Project , 2017, Comput. Sci. Eng..

[46]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[47]  Carsten Burstedde,et al.  Recursive Algorithms for Distributed Forests of Octrees , 2014, SIAM J. Sci. Comput..

[48]  W. K. Anderson,et al.  Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows , 2014 .

[49]  R. Ziemer TEMPORAL AND SPATIAL SCALES , 1999 .

[50]  Jens Nørkær Sørensen,et al.  Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow , 2007 .

[51]  Francesco Castellani,et al.  IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models , 2014 .

[52]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[53]  Niels N. Sørensen,et al.  Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel , 2002 .

[54]  Dimitri J. Mavriplis,et al.  Wind Farm simulations using a Full Rotor Model for Wind Turbines , 2014 .

[55]  Yi Han,et al.  Large eddy simulation of atmospheric boundary layer flows over complex terrain with varying stability conditions , 2017 .

[56]  Dimitri J. Mavriplis,et al.  NSU3D Results for the Fourth AIAA Drag Prediction Workshop , 2010 .

[57]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[58]  Dimitri J. Mavriplis,et al.  A high-order discontinuous-Galerkin octree-based AMR solver for overset simulations , 2017 .

[59]  Jeremy S. Meredith,et al.  Parallel in situ coupling of simulation with a fully featured visualization system , 2011, EGPGV '11.

[60]  Dimitri J. Mavriplis,et al.  An Adaptive Explicit 3D Discontinuous Galerkin Solver for Unsteady Problems , 2015 .

[61]  Dimitri J. Mavriplis,et al.  Grid Resolution Study of a Drag Prediction Workshop Configuration Using the NSU3D Unstructured Mesh Solver , 2005 .

[62]  L. Fingersh Unsteady Aerodynamics Experiment , 2001 .

[63]  Kathryn E. Johnson,et al.  Evaluating techniques for redirecting turbine wakes using SOWFA , 2014 .

[64]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[65]  Pierangelo Masarati,et al.  Application and validation of incrementally complex models for wind turbine aerodynamics, isolated wind turbine in uniform inflow conditions , 2015 .

[66]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[67]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[68]  J. Naughton,et al.  Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains , 2016 .

[69]  Freddie D. Witherden,et al.  Heterogeneous Computing on Mixed Unstructured Grids with PyFR , 2014, ArXiv.

[70]  Antony Jameson,et al.  A High-Order Overset Method on Moving and Deforming Grids , 2016 .

[71]  Li Wang,et al.  Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations , 2009, J. Comput. Phys..

[72]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[73]  Dimitri J. Mavriplis,et al.  NSU3D Results for the Second AIAA High-Lift Prediction Workshop , 2015 .

[74]  Laslo T. Diosady,et al.  Design of a Variational Multiscale Method for Turbulent Compressible Flows , 2013 .

[75]  Kelly R. Laflin,et al.  CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop , 2013 .

[76]  Scott R. Kohn,et al.  Large scale parallel structured AMR calculations using the SAMRAI framework , 2001, SC.

[77]  Maureen Hand,et al.  NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements , 2001 .

[78]  Harish Gopalan,et al.  A coupled mesoscale–microscale framework for wind resource estimation and farm aerodynamics , 2014 .

[79]  P. Sullivan,et al.  A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows , 1994 .

[80]  Jeppe Johansen,et al.  Wind turbine rotor-tower interaction using an incompressible overset grid method , 2009 .

[81]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .

[82]  F. Umbach Global energy security and the implications for the EU , 2010 .

[83]  Scott Schreck,et al.  Wind Tunnel Testing of NREL's Unsteady Aerodynamics Experiment , 2001 .

[84]  EswaraRao Anjuri Vsj,et al.  CFD predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind tunnel , 2013 .