Biochemical studies of membrane fusion at the single-particle level.

To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.

[1]  Y. Shin,et al.  The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening. , 2013, The Biochemical journal.

[2]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[3]  G. Gould,et al.  SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Tamm,et al.  Molecular mechanism of cholesterol- and polyphosphoinositide-mediated syntaxin clustering. , 2011, Biochemistry.

[5]  L. Tamm,et al.  Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. , 2006, Biophysical journal.

[6]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[7]  G. Gould,et al.  Lipid Raft Association of SNARE Proteins Regulates Exocytosis in PC12 Cells* , 2005, Journal of Biological Chemistry.

[8]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[9]  Axel T Brunger,et al.  Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system , 2012, Nature Protocols.

[10]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[11]  Sune M. Christensen,et al.  A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. , 2008, Biophysical journal.

[12]  J. Rizo,et al.  A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. , 2007, Journal of molecular biology.

[13]  A. Brunger,et al.  Studying protein-reconstituted proteoliposome fusion with content indicators in vitro. , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  Axel T Brunger,et al.  Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2 , 2013, eLife.

[15]  Nils Brose,et al.  Distinct domains of Complexin I differentially regulate neurotransmitter release , 2007, Nature Structural &Molecular Biology.

[16]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[17]  J. Rothman,et al.  Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells , 2012, Nature Protocols.

[18]  M. Kozlov,et al.  Protein-lipid interplay in fusion and fission of biological membranes. , 2003, Annual review of biochemistry.

[19]  R. Cornell,et al.  The curvature sensitivity of a membrane-binding amphipathic helix can be modulated by the charge on a flanking region. , 2014, Biochemistry.

[20]  A. Brunger,et al.  Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. , 2008, Structure.

[21]  A. Brunger,et al.  Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins , 2015, Critical reviews in biochemistry and molecular biology.

[22]  Søren L Pedersen,et al.  Membrane Curvature Sensing by Amphipathic Helices , 2011, The Journal of Biological Chemistry.

[23]  K. Schulten,et al.  Fusion pore formation and expansion induced by Ca2+ and synaptotagmin 1 , 2013, Proceedings of the National Academy of Sciences.

[24]  T. Ha,et al.  Complexin and Ca2+ stimulate SNARE-mediated membrane fusion , 2008, Nature Structural &Molecular Biology.

[25]  T. Südhof,et al.  α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro , 2010, Science.

[26]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[27]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[28]  J. Rizo,et al.  Reconstitution of the Vital Functions of Munc18 and Munc13 in Neurotransmitter Release , 2013, Science.

[29]  Marta K. Domanska,et al.  Single SNARE-mediated vesicle fusion observed in vitro by polarized TIRFM. , 2010, Biophysical journal.

[30]  Jeff Coleman,et al.  A fast, single-vesicle fusion assay mimics physiological SNARE requirements , 2010, Proceedings of the National Academy of Sciences.

[31]  R. Pfuetzner,et al.  Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18 , 2017, Neuron.

[32]  Bruno Antonny,et al.  Mechanisms of membrane curvature sensing. , 2011, Annual review of biochemistry.

[33]  J. Dittman,et al.  Membrane curvature sensing by the C-terminal domain of complexin , 2014, Nature Communications.

[34]  Edwin R. Chapman,et al.  Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion , 2009, Cell.

[35]  Q. Zhong,et al.  SNARE-mediated membrane fusion in autophagy. , 2016, Seminars in cell & developmental biology.

[36]  Y. Ishitsuka,et al.  Single-molecule FRET study of SNARE-mediated membrane fusion. , 2011, Bioscience reports.

[37]  R. Habets,et al.  Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release , 2013, Neuron.

[38]  R. Jahn,et al.  Reconstitution of calcium-mediated exocytosis of dense-core vesicles , 2017, Science Advances.

[39]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.

[40]  C. Joo,et al.  A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins , 2012, Nature Protocols.

[41]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[42]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[43]  Y. Shin,et al.  C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo. , 2006, Molecular biology of the cell.

[44]  George J Augustine,et al.  Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. , 2007, Biophysical journal.

[45]  E. Chapman,et al.  Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion , 2011, The Journal of cell biology.

[46]  Y. Shin,et al.  Nonaggregated α-Synuclein Influences SNARE-Dependent Vesicle Docking via Membrane Binding , 2014, Biochemistry.

[47]  R. Pfuetzner,et al.  Complexin-1 Enhances the On-Rate of Vesicle Docking via Simultaneous SNARE and Membrane Interactions , 2013, Journal of the American Chemical Society.

[48]  Axel T. Brunger,et al.  Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Minglei Zhao,et al.  SNARE‐Reconstituted Liposomes as Controllable Zeptoliter Nanoreactors for Macromolecules , 2017, Advanced biosystems.

[50]  L. Tamm,et al.  Clustering of syntaxin-1A in model membranes is modulated by phosphatidylinositol 4,5-bisphosphate and cholesterol. , 2009, Biochemistry.

[51]  Axel T. Brunger,et al.  Single-molecule FRET-derived model of the synaptotagmin 1–SNARE fusion complex , 2010, Nature Structural &Molecular Biology.

[52]  Colin Rickman,et al.  Conserved prefusion protein assembly in regulated exocytosis. , 2005, Molecular biology of the cell.

[53]  A T Brünger,et al.  Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation* , 1997, The Journal of Biological Chemistry.

[54]  Patricia Grob,et al.  In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release , 2011, Proceedings of the National Academy of Sciences.

[55]  Alexander Stein,et al.  N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion , 2006, Science.

[56]  J. Rothman The principle of membrane fusion in the cell (Nobel lecture). , 2014, Angewandte Chemie.

[57]  Dan Li,et al.  Versatile Structures of α-Synuclein , 2016, Front. Mol. Neurosci..

[58]  T. Ha,et al.  Single-Vesicle Fusion Assay Reveals Munc18-1 Binding to the SNARE Core Is Sufficient for Stimulating Membrane Fusion , 2010, ACS chemical neuroscience.

[59]  S. Terakawa,et al.  The Activation of Exocytotic Sites by the Formation of Phosphatidylinositol 4,5-Bisphosphate Microdomains at Syntaxin Clusters* , 2005, Journal of Biological Chemistry.

[60]  M. Goedert,et al.  Binding of α-Synuclein to Brain Vesicles Is Abolished by Familial Parkinson’s Disease Mutation* , 1998, The Journal of Biological Chemistry.

[61]  F. Benfenati,et al.  The synapsins: Key actors of synapse function and plasticity , 2010, Progress in Neurobiology.

[62]  T. Ha,et al.  1 Supporting Information , 2002 .

[63]  T. Südhof,et al.  Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. , 1991, The Journal of biological chemistry.

[64]  Wonhwa Cho,et al.  Membrane binding and subcellular targeting of C2 domains. , 2006, Biochimica et biophysica acta.

[65]  K. Fiebig,et al.  Folding intermediates of SNARE complex assembly , 1999, Nature Structural Biology.

[66]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[67]  J. Rothman,et al.  Imaging single membrane fusion events mediated by SNARE proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Camilli,et al.  Single-molecule force spectroscopy of protein-membrane interactions , 2017, bioRxiv.

[69]  A. Brunger,et al.  Single-molecule studies of the neuronal SNARE fusion machinery. , 2009, Annual review of biochemistry.

[70]  T. Südhof,et al.  Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. Tamm,et al.  Reconstituting SNARE-mediated membrane fusion at the single liposome level. , 2015, Methods in cell biology.

[72]  E. Rhoades,et al.  α-Synuclein can inhibit SNARE-mediated vesicle fusion through direct interactions with lipid bilayers. , 2013, Biochemistry.

[73]  William Wickner,et al.  Membrane fusion , 2008, Nature Structural &Molecular Biology.

[74]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[75]  Edwin R Chapman,et al.  SNARE-driven, 25-millisecond vesicle fusion in vitro. , 2005, Biophysical journal.

[76]  D. Eberhard,et al.  Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. , 1990, The Biochemical journal.

[77]  Dietmar Riedel,et al.  Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes , 2009, Cell.

[78]  D. Lilley,et al.  Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. , 2004, Biophysical journal.

[79]  H. Urlaub,et al.  An activated Q‐SNARE/SM protein complex as a possible intermediate in SNARE assembly , 2017, The EMBO journal.

[80]  A. Brunger,et al.  Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex , 2016, eLife.

[81]  A. Brunger,et al.  Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis , 2017, The EMBO journal.

[82]  T. Südhof,et al.  C-terminal domain of mammalian complexin-1 localizes to highly curved membranes , 2016, Proceedings of the National Academy of Sciences.

[83]  A. Brunger,et al.  Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). , 2004, Biophysical journal.

[84]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.

[85]  O. Shupliakov,et al.  Synapsin I Senses Membrane Curvature by an Amphipathic Lipid Packing Sensor Motif , 2011, The Journal of Neuroscience.

[86]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[87]  T. Ha,et al.  A single vesicle content mixing assay for SNARE-mediated membrane fusion , 2010, Nature communications.

[88]  Hugo J. Bellen,et al.  Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis , 2009, Neuron.

[89]  Junjie Xu,et al.  The Synaptic Vesicle Release Machinery. , 2015, Annual review of biophysics.

[90]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[91]  J. Sachs,et al.  α-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes. , 2012, Journal of the American Chemical Society.

[92]  L. Tamm,et al.  Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion , 2017, Front. Mol. Neurosci..

[93]  R. Jahn,et al.  Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS , 2009, Proceedings of the National Academy of Sciences.

[94]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[95]  Nam Ki Lee,et al.  Solution single‐vesicle assay reveals PIP2‐mediated sequential actions of synaptotagmin‐1 on SNAREs , 2012, The EMBO journal.

[96]  S. Hell,et al.  Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains , 2015, Nature Communications.

[97]  M. L. Wagner,et al.  Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. , 2000, Biophysical journal.

[98]  R. Pfuetzner,et al.  N-terminal domain of complexin independently activates calcium-triggered fusion , 2016, Proceedings of the National Academy of Sciences.

[99]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[100]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[101]  G. Haran,et al.  Immobilization in Surface-Tethered Lipid Vesicles as a New Tool for Single Biomolecule Spectroscopy , 2001 .

[102]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[103]  G. van den Bogaart,et al.  Cis- and trans-membrane interactions of synaptotagmin-1 , 2012, Proceedings of the National Academy of Sciences.

[104]  Changbong Hyeon,et al.  Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1 , 2010, Science.

[105]  Marta K. Domanska,et al.  Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion* , 2009, The Journal of Biological Chemistry.

[106]  J. Buchanan,et al.  Morphologically Docked Synaptic Vesicles Are Reduced insynaptotagmin Mutants of Drosophila , 1998, The Journal of Neuroscience.

[107]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[108]  A. Brünger,et al.  A Structural Change Occurs upon Binding of Syntaxin to SNAP-25* , 1997, The Journal of Biological Chemistry.

[109]  Michel Goedert,et al.  Alpha-synuclein and neurodegenerative diseases , 2001, Nature Reviews Neuroscience.

[110]  R. Schneiter,et al.  Lipid signalling in disease , 2008, Nature Reviews Molecular Cell Biology.

[111]  Nam Ki Lee,et al.  Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking , 2013, Proceedings of the National Academy of Sciences.

[112]  L. Tamm,et al.  Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[113]  Axel T Brunger,et al.  Three-dimensional molecular modeling with single molecule FRET. , 2011, Journal of structural biology.

[114]  J. Hay,et al.  Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion , 1993, Nature.

[115]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[116]  Sune M. Christensen,et al.  Sensing-Applications of Surface-Based Single Vesicle Arrays , 2010, Sensors.

[117]  R. Scheller,et al.  Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.