BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES

Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival data set for close and contact binary Trojans and Hildas via their diagnostically large light curve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large light curve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14%–23% for Trojans larger than ∼12 km and 30%–51% for Hildas larger than ∼4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.

[1]  Tom Gaertner Ellipsoidal Figures Of Equilibrium , 2016 .

[2]  J. Berthier,et al.  Physical and dynamical properties of the main belt triple asteroid (87) Sylvia , 2014, 1407.1292.

[3]  P. Kalas,et al.  THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR , 2014, 1402.7336.

[4]  K. M. Sweeney,et al.  Size matters: The rotation rates of small near-Earth asteroids , 2013 .

[5]  D. Vokrouhlický,et al.  CAPTURE OF TROJANS BY JUMPING JUPITER , 2013, 1303.2900.

[6]  Amy K. Mainzer,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY , 2012, 1209.1549.

[7]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.

[8]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE HILDA POPULATION: PRELIMINARY RESULTS , 2011, 1110.0283.

[9]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS , 2011, 1110.0280.

[10]  Harold F. Levison,et al.  LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK , 2011 .

[11]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[12]  A. Erikson,et al.  ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS , 2011 .

[13]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[14]  H. Perets BINARY PLANETESIMALS AND THEIR ROLE IN PLANET FORMATION , 2010, 1012.0567.

[15]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[16]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[17]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[18]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[19]  D. Jewitt,et al.  Fraction of Contact Binary Trojan Asteroids , 2006, 0706.0233.

[20]  E. Johansson,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[21]  A. Cazenave,et al.  Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy , 2006 .

[22]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[23]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[24]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[25]  Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders , 2005, astro-ph/0504060.

[26]  D. Jewitt,et al.  Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries , 2004, astro-ph/0402277.

[27]  P. Hut,et al.  The formation of Kuiper-belt binaries through exchange reactions , 2004, Nature.

[28]  S. Weidenschilling On the Origin of Binary Transneptunian Objects , 2002 .

[29]  R. Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[30]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[31]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[32]  C. Lagerkvist,et al.  A study of Hilda asteroids - VI. Analysis of the lightcurve properties , 1999 .

[33]  S. Love,et al.  1620 Geographos and 433 Eros: Shaped by Planetary Tides? , 1998, astro-ph/9812235.

[34]  A. Erikson,et al.  A Study of Hilda Asteroids: V. Lightcurves of 47 Hilda Asteroids☆☆☆ , 1998 .

[35]  Richard P. Binzel,et al.  Trojan, Hilda, and Cybele asteroids: New lightcurve observations and analysis , 1992 .

[36]  W. Hartmann,et al.  Trojan and Hilda asteroid lightcurves. I - Anomalously elongated shapes among Trojans (and Hildas?) , 1988 .

[37]  P. Farinella,et al.  The asteroids as outcomes of catastrophic collisions , 1982 .