Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band

To retrieve soil moisture over vegetation-covered areas from microwave radiometry, it is necessary to account for vegetation effects. At L-band, many retrieval approaches are based on a simple model that relies on two vegetation parameters: the optical depth (/spl tau/) and the single-scattering albedo (/spl omega/). When the retrievals are based on multiconfiguration measurements, it is necessary to take into account the dependence of /spl tau/ and /spl omega/ on the system configuration, in terms of incidence angle and polarization. In this paper, this dependence was investigated for several crop types (corn, soybean, wheat, grass, and alfalfa) based on L-band experimental datasets. The results should be useful for developing more accurate forward modeling and retrieval methods over mixed pixels including a variety of vegetation types.

[1]  Fawwaz T. Ulaby,et al.  Measured microwave emission and scattering in vegetation canopies , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[2]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[3]  Thepolarjmetric Radiometer L-Band Polarimetric Correlation Radiometer with Subharmonic Sampling , 2001 .

[4]  Niels Skou,et al.  Polarimetric radiometer configurations: potential accuracy and sensitivity , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  James R. Wang,et al.  Multifrequency Measurements of the Effects of Soil Moisture, Soil Texture, And Surface Roughness , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[6]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[7]  Yann Kerr,et al.  Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission) , 2000 .

[8]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[11]  Richard K. Moore,et al.  Microwave Remote Sensing - Active and Passive - Volume I - Microwave Remote Sensing Fundamentals and Radiometry , 1981 .

[12]  James E. McMurtrey,et al.  A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields , 1982 .

[13]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Adriaan A. Van de Griend,et al.  Measurement and behavior of dual-polarization vegetation optical depth and single scattering albedo at 1.4- and 5-GHz microwave frequencies , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Jean-Pierre Wigneron,et al.  Estimation of microwave parameters of crops from radiometric measurements , 1996 .

[16]  Yann Kerr,et al.  Inversion of surface parameters from passive microwave measurements over a soybean field , 1993 .

[17]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[18]  Jean-Pierre Wigneron,et al.  Global soil moisture retrieval from a synthetic L-band brightness temperature data set , 2003 .

[19]  Y. Kerr,et al.  Selecting an optimal configuration for the Soil Moisture and Ocean Salinity mission , 2003 .

[20]  Fawwaz Ulaby,et al.  Microwave Attenuation Properties of Vegetation Canopies , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Yann Kerr,et al.  Monitoring water interception by crop fields from passive microwave observations , 1996 .

[22]  James E. McMurtrey,et al.  Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981 , 1984 .

[23]  David M. Le Vine,et al.  Dependence of attenuation in a vegetation canopy on frequency and plant water content , 1996, IEEE Trans. Geosci. Remote. Sens..

[24]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[25]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  Adriaan A. Van de Griend,et al.  The influence of polarization on canopy transmission properties at 6.6 GHz and implications for large scale soil moisture monitoring in semi-arid environments , 1994, IEEE Trans. Geosci. Remote. Sens..