PROJECTION ITERATIVE SCHEMES FOR GENERAL VARIATIONAL INEQUALITIES

In this paper, we propose some modified projection methods for general variational inequalities. The convergence of these methods requires the monotonicity of the underlying mapping. Preliminary computational experience is also reported.

[1]  M. Noor Some algorithms for general monotone mixed variational inequalities , 1999 .

[2]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[3]  Naihua Xiu,et al.  Unified Framework of Extragradient-Type Methods for Pseudomonotone Variational Inequalities , 2001 .

[4]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[5]  W. Hager Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .

[6]  M. Noor General variational inequalities , 1988 .

[7]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[8]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[9]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[10]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[11]  N. Xiu,et al.  A new version of extragradient method for variational inequality problems , 2001 .

[12]  Bingsheng He,et al.  Inexact implicit methods for monotone general variational inequalities , 1999, Math. Program..

[13]  J. Pang,et al.  On a Generalization of a Normal Map and Equation , 1995 .

[14]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[15]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[16]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[17]  Muhammad Aslam Noor Modified projection method for pseudomonotone variational inequalities , 2002, Appl. Math. Lett..

[18]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[19]  B. He A class of projection and contraction methods for monotone variational inequalities , 1997 .