Advanced Metal Nanostructure Design for Surface Plasmon Photonic Bandgap Biosensor Device

This paper is intended to demonstrate the effect of coupled surface plasmon polaritons (SPPs) on the optical response of a one-dimensional metal grating nanostructure patterned by electron beam lithography (EBL) on the silicon surface. Variations of the structure parameters allow continuously tuning of these high-transmission bands across the nanostructure plasmon resonance. This phenomenon gives rise to a selective spectral response and a local field enhancement which can be used in the context of nano-optics. We have examined the emission and reflectance spectra through various fabricated structure layers to determine the emissive angle in SPPs modes. The presented results show that the enhanced reflectance through grating nanostructures is important for such a planar design of novel optical biosensor.

[1]  J. M. Chen,et al.  Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films , 1981 .

[2]  H. Haus Waves and fields in optoelectronics , 1983 .

[3]  Christopher Robert Lawrence,et al.  Azimuth-angle-dependent reflectivity data from metallic gratings , 1998 .

[4]  H A Macleod,et al.  Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. , 1997, Biochimica et biophysica acta.

[5]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[6]  T Tamir,et al.  Range extension of surface plasmons by dielectric layers. , 1987, Optics letters.

[7]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[8]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[9]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[10]  Z. Salamon,et al.  Surface Plasmon Resonance, Applications , 1999 .

[11]  Jiří Homola,et al.  Long-range surface plasmons for high-resolution surface plasmon resonance sensors , 2001 .

[12]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[13]  Hiroshi Handa,et al.  Real-Time Analysis of Biomolecular Interactions , 2000, Springer Japan.

[14]  H. Macleod,et al.  Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. , 1997, Biophysical journal.

[15]  Kurt Busch,et al.  Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs , 2005 .

[16]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[17]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[18]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[19]  Jiří Homola,et al.  Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison , 1999 .

[20]  Hiroshi Handa,et al.  Real-time analysis of biomolecular interactions : applications of BIACORE , 2000 .