Heteroleptic [Bis(oxazoline)](dipyrrinato)zinc(II) Complexes: Bright and Circularly Polarized Luminescence from an Originally Achiral Dipyrrinato Ligand.

Heteroleptic zinc(II) complexes synthesized using achiral dipyrrinato and chiral bis(oxazoline) ligands show bright fluorescence with quantum efficiencies of up to 0.70. The fluorescence originates from the (1)π-π* photoexcited state localized exclusively on the dipyrrinato ligand. Furthermore, the luminescence is circularly polarized despite the achirality of the dipyrrinato ligand. Single-crystal X-ray structure analysis discloses that the chiral bis(oxazoline) ligand undergoes intramolecular π-π stacking with the dipyrrinato ligand, inducing axial chirality in the dipyrrinato moiety.

[1]  H. Nishihara,et al.  Heteroleptic bis(dipyrrinato)copper(II) and nickel(II) complexes. , 2015, Dalton transactions.

[2]  H. Nishihara,et al.  New aspects in bis and tris(dipyrrinato)metal complexes: bright luminescence, self-assembled nanoarchitectures, and materials applications , 2015 .

[3]  Qian Liu,et al.  A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet , 2015, Nature Communications.

[4]  H. Gray,et al.  Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins , 2014, The journal of physical chemistry. C, Nanomaterials and interfaces.

[5]  H. Nishihara,et al.  Luminescent heteroleptic tris(dipyrrinato)indium(III) complexes. , 2014, Inorganic chemistry.

[6]  W. Dehaen,et al.  Multiple Redox-Active Sites in Copper Dipyrromethene-Corrole Self-Assembled Monolayers Deposited onto Gold Electrodes , 2014, International Journal of Electrochemical Science.

[7]  Gilles Muller,et al.  Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral O-BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores , 2014, Journal of the American Chemical Society.

[8]  W. Wong,et al.  Trifunctional Ir(III) ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices. , 2014, Chemical communications.

[9]  M. W. Hosseini,et al.  From sequential to one-pot synthesis of dipyrrin based grid-type mixed metal-organic frameworks. , 2013, Inorganic chemistry.

[10]  H. Maeda,et al.  Recent progress in research on stimuli-responsive circularly polarized luminescence based on π-conjugated molecules , 2013 .

[11]  S. Baudron,et al.  Luminescent dipyrrin based metal complexes. , 2013, Dalton transactions.

[12]  Hiromi Oyama,et al.  Facile synthetic route to highly luminescent sila[7]helicene. , 2013, Organic letters.

[13]  H. Nishihara,et al.  Coordination Programming of Photofunctional Molecules , 2013, Molecules.

[14]  M. Uchiyama,et al.  Two double helical modes of bidipyrrin–ZnII complexes , 2013 .

[15]  M. Fujiki,et al.  Control of circularly polarized luminescence by using open- and closed-type binaphthyl derivatives with the same axial chirality. , 2012, Chemistry, an Asian journal.

[16]  Y. Kitagawa,et al.  Fluorescent azadipyrrinato zinc(II) complex: hybridisation with a dipyrrinato ligand. , 2012, Dalton transactions.

[17]  D. Parker,et al.  Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. , 2012, Chemical Society reviews.

[18]  Y. Kitagawa,et al.  An extremely bright heteroleptic bis(dipyrrinato)zinc(II) complex. , 2012, Chemistry, an Asian journal.

[19]  T. S. Cameron,et al.  Synthesis and characterization of fluorescent pyrrolyldipyrrinato Sn(IV) complexes. , 2011, Inorganic chemistry.

[20]  T. Kawai,et al.  Chemical-stimuli-controllable circularly polarized luminescence from anion-responsive π-conjugated molecules. , 2011, Journal of the American Chemical Society.

[21]  D. Dolphin,et al.  Self-assembly of [2×2] grids and a hexagon using bis(dipyrrin)s. , 2011, Chemical communications.

[22]  S. Furumi Recent progress in chiral photonic band-gap liquid crystals for laser applications. , 2010, Chemical record.

[23]  S. Vinogradov,et al.  Pi-extended dipyrrins capable of highly fluorogenic complexation with metal ions. , 2010, Journal of the American Chemical Society.

[24]  T. Kushida,et al.  Synthesis and reversible control of the fluorescent properties of a divalent tin dipyrromethene. , 2009, Journal of the American Chemical Society.

[25]  D. Dolphin,et al.  Self-assembly of oligomeric linear dipyrromethene metal complexes. , 2009, Chemical communications.

[26]  T. Nabeshima,et al.  Aluminium complexes of N2O2-type dipyrrins: the first hetero-multinuclear complexes of metallo-dipyrrins with high fluorescence quantum yields. , 2009, Chemical communications.

[27]  W. Dehaen,et al.  Electroactive dipyrromethene-Cu(II) self-assembled monolayers: complexation reaction on the surface of gold electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[28]  Anthony Harriman,et al.  Die vielseitige Chemie von Bodipy‐Fluoreszenzfarbstoffen , 2008 .

[29]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[30]  Kevin Burgess,et al.  BODIPY dyes and their derivatives: syntheses and spectroscopic properties. , 2007, Chemical reviews.

[31]  Yun Chi,et al.  Blue-emitting heteroleptic iridium(III) complexes suitable for high-efficiency phosphorescent OLEDs. , 2007, Angewandte Chemie.

[32]  S. Bellemin‐Laponnaz,et al.  Metal Complexes Incorporating Monoanionic Bisoxazolinate Ligands: Synthesis, Structures, Reactivity and Applications in Asymmetric Catalysis , 2007 .

[33]  Seth M. Cohen,et al.  Preparation and characterization of asymmetric alpha-alkoxy dipyrrin ligands and their metal complexes. , 2007, Dalton transactions.

[34]  S. Bernhard,et al.  Controlling the helicity of 2,2'-bipyridyl ruthenium(II) and zinc(II) hemicage complexes. , 2007, Journal of the American Chemical Society.

[35]  Seth M. Cohen,et al.  Luminescent dipyrrinato complexes of trivalent group 13 metal ions. , 2006, Inorganic chemistry.

[36]  G. Desimoni,et al.  C(2)-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. , 2006, Chemical reviews.

[37]  Soo Young Park,et al.  Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: facile and efficient color tuning over the whole visible range by the ancillary ligand structure. , 2005, Journal of the American Chemical Society.

[38]  Christopher J. Wilson,et al.  Synthesis and structural characterisation of novel bimetallic dipyrromethene complexes: rotational locking of the 5-aryl group. , 2004, Chemical communications.

[39]  I. Sazanovich,et al.  Structural control of the excited-state dynamics of bis(dipyrrinato)zinc complexes: self-assembling chromophores for light-harvesting architectures. , 2004, Journal of the American Chemical Society.

[40]  M. Lemaire,et al.  Enantioselective catalysis using heterogeneous bis(oxazoline) ligands: which factors influence the enantioselectivity? , 2002, Chemical reviews.

[41]  Arun K. Ghosh,et al.  C 2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis. , 1998, Tetrahedron, asymmetry.

[42]  L. Johansson,et al.  Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins , 1994 .

[43]  A. Pfaltz Chiral semicorrins and related nitrogen heterocycles as ligands in asymmetric catalysis , 1993 .

[44]  Francesco Zinna,et al.  Lanthanide circularly polarized luminescence: bases and applications. , 2015, Chirality.

[45]  W. Wong,et al.  tris-Heteroleptic cyclometalated iridium(III) complexes with ambipolar or electron injection/transport features for highly efficient electrophosphorescent devices. , 2015, Chemistry, an Asian journal.

[46]  R. Marchelli,et al.  Enantioselective sensing by luminescence. , 2011, Topics in current chemistry.