Mélange: Space Folding for Visual Exploration

Navigating in large geometric spaces-such as maps, social networks, or long documents-typically requires a sequence of pan and zoom actions. However, this strategy is often ineffective and cumbersome, especially when trying to study and compare several distant objects. We propose a new distortion technique that folds the intervening space to guarantee visibility of multiple focus regions. The folds themselves show contextual information and support unfolding and paging interactions. We conducted a study comparing the space-folding technique to existing approaches and found that participants performed significantly better with the new technique. We also describe how to implement this distortion technique and give an in-depth case study on how to apply it to the visualization of large-scale 1D time-series data.

[1]  Catherine Plaisant,et al.  SpaceTree: supporting exploration in large node link tree, design evolution and empirical evaluation , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[2]  James D. Hollan,et al.  Pad++: A Zoomable Graphical Sketchpad For Exploring Alternate Interface Physics , 1996, J. Vis. Lang. Comput..

[3]  M. Sheelagh T. Carpendale,et al.  A framework for unifying presentation space , 2001, UIST '01.

[4]  Stuart K. Card,et al.  Degree-of-interest trees: a component of an attention-reactive user interface , 2002, AVI '02.

[5]  Pourang Irani,et al.  Comparing visualizations for tracking off-screen moving targets , 2007, CHI Extended Abstracts.

[6]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[7]  Niklas Elmqvist,et al.  A Taxonomy of 3D Occlusion Management for Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[9]  Wendy E. Mackay,et al.  MarkerClock: A Communicating Augmented Clock for Elderly , 2007, INTERACT.

[10]  Yann Riche Designing communication appliances to support aging in place , 2008 .

[11]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[12]  Patrick Baudisch,et al.  Halo: a technique for visualizing off-screen objects , 2003, CHI '03.

[13]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[14]  George W. Furnas,et al.  A fisheye follow-up: further reflections on focus + context , 2006, CHI.

[15]  Allison Druin,et al.  Technology probes: inspiring design for and with families , 2003, CHI '03.

[16]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[17]  Jean-Daniel Fekete,et al.  OrthoZoom scroller: 1D multi-scale navigation , 2006, CHI.

[18]  Benjamin B. Bederson,et al.  Jazz: an extensible zoomable user interface graphics toolkit in Java , 2000, UIST '00.

[19]  Jarke J. van Wijk,et al.  Smooth and efficient zooming and panning , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[20]  Serdar Tasiran,et al.  TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility , 2003, ACM Trans. Graph..

[21]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[22]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[23]  Tamara Munzner,et al.  PRISAD: a partitioned rendering infrastructure for scalable accordion drawing (extended version) , 2006 .

[24]  Jock D. Mackinlay,et al.  The perspective wall: detail and context smoothly integrated , 1991, CHI.

[25]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[26]  Ben Shneiderman,et al.  LifeLines: visualizing personal histories , 1996, CHI.

[27]  M. Sheelagh T. Carpendale,et al.  On the effects of viewing cues in comprehending distortions , 2002, NordiCHI '02.

[28]  Jean-Daniel Fekete,et al.  Melange: space folding for multi-focus interaction , 2008, CHI.

[29]  Patrick Baudisch,et al.  City lights: contextual views in minimal space , 2003, CHI Extended Abstracts.

[30]  昌子 伊東,et al.  Conference on Human Factors in Computing Systems: CHI'96のワークショップ参加報告 , 1996 .

[31]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[32]  Jean-Daniel Fekete,et al.  MatLink: Enhanced Matrix Visualization for Analyzing Social Networks , 2007, INTERACT.

[33]  Carl Gutwin,et al.  Improving selection of off-screen targets with hopping , 2006, CHI.

[34]  Carl Gutwin,et al.  Supporting multi-point interaction in visual workspaces , 2007, CHI.

[35]  Takeo Igarashi,et al.  Speed-dependent automatic zooming for browsing large documents , 2000, UIST '00.

[36]  Steven P. Reiss,et al.  Stretching the rubber sheet: a metaphor for viewing large layouts on small screens , 1993, UIST '93.

[37]  Wendy E. Mackay,et al.  PeerCare: Supporting Awareness of Rhythms and Routines for Better Aging in Place , 2010, Computer Supported Cooperative Work (CSCW).

[38]  Bruno von Niman,et al.  Transparent communication appliances , 1999, HCI.

[39]  Yves Guiard,et al.  Multiscale pointing: facilitating pan-zoom coordination , 2002, CHI Extended Abstracts.

[40]  Jock D. Mackinlay,et al.  The document lens , 1993, UIST '93.

[41]  Tamara Munzner,et al.  An evaluation of pan & zoom and rubber sheet navigation with and without an overview , 2006, CHI.