In silico analysis of human Hsp90 for the identification of novel anti-cancer drug target sites and natural compound inhibitors

...................................................................................................................................... i Declaration ................................................................................................................................. ii Research outputs ...................................................................................................................... iii Dedication ................................................................................................................................. iv Acknowledgements .................................................................................................................... v Table of

[1]  J. Finch,et al.  Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA , 1978, Nature.

[2]  James Andrew McCammon,et al.  Ligand-receptor interactions , 1984, Comput. Chem..

[3]  G. Kramer,et al.  The 90-kilodalton peptide of the heme-regulated eIF-2 alpha kinase has sequence similarity with the 90-kilodalton heat shock protein. , 1987, Biochemistry.

[4]  James C. A. BARDWELLt Ancient Heat Shock Gene Is Dispensable , 1988 .

[5]  J. J. Dougherty,et al.  Characterization of purified avian 90,000-Da heat shock protein. , 1988, Archives of biochemistry and biophysics.

[6]  C. Anderson,et al.  Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. , 1989, The Journal of biological chemistry.

[7]  E. Appella,et al.  Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. , 1989, The Journal of biological chemistry.

[8]  J. Garnier,et al.  The cDNA-derived amino acid sequence of chick heat shock protein Mr 90,000 (HSP 90) reveals a "DNA like" structure: potential site of interaction with steroid receptors. , 1989, Biochemical and biophysical research communications.

[9]  K. Suzuki,et al.  Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90. , 1991, The Journal of biological chemistry.

[10]  Y. Takahashi,et al.  Characterization of the hydrophobic region of heat shock protein 90. , 1991, Journal of biochemistry.

[11]  J. Buchner,et al.  Hsp90 chaperones protein folding in vitro , 1992, Nature.

[12]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[13]  F. Hartl,et al.  Molecular chaperones in cellular protein folding. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  K. Suzuki,et al.  The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo , 1994, Molecular and cellular biology.

[15]  R. Gupta,et al.  Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. , 1995, Molecular biology and evolution.

[16]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[17]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[18]  J. Buchner,et al.  Transient Interaction of Hsp90 with Early Unfolding Intermediates of Citrate Synthase , 1995, The Journal of Biological Chemistry.

[19]  R. Morimoto,et al.  The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj‐1 have distinct roles in recognition of a non‐native protein and protein refolding. , 1996, The EMBO journal.

[20]  William J. Welch,et al.  Influence of molecular and chemical chaperones on protein folding. , 1996, Cell stress & chaperones.

[21]  J. Buchner Supervising the fold: functional principles of molecular chaperones , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  D. Picard,et al.  Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[24]  Jason C. Young,et al.  In vitro evidence that hsp90 contains two independent chaperone sites , 1997, FEBS letters.

[25]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[26]  L. Pearl,et al.  Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone , 1997, Cell.

[27]  D. Toft Recent Advances in the Study of hsp90 Structure and Mechanism of Action , 1998, Trends in Endocrinology & Metabolism.

[28]  P. Csermely,et al.  Associate Editor: D. Shugar The 90-kDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Review , 1998 .

[29]  D. Toft,et al.  Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. , 1998, Cell stress & chaperones.

[30]  F. Hartl,et al.  In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis , 1998, The Journal of cell biology.

[31]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[32]  H. Rammensee,et al.  Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. , 1999, Journal of immunology.

[33]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[34]  Peer Bork,et al.  SMART: identification and annotation of domains from signalling and extracellular protein sequences , 1999, Nucleic Acids Res..

[35]  Tim J. P. Hubbard,et al.  SCOP: a Structural Classification of Proteins database , 1999, Nucleic Acids Res..

[36]  L. Neckers,et al.  Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. , 2000, Journal of the National Cancer Institute.

[37]  Protein-Ligand Interactions,et al.  Knowledge-based Scoring Function to Predict , 2000 .

[38]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[39]  M. Inouye,et al.  GHKL, an emergent ATPase/kinase superfamily. , 2000, Trends in biochemical sciences.

[40]  M. Dunn Protein–Ligand Interactions: General Description , 2001 .

[41]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[42]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[43]  Kuang Lin,et al.  Threading Using Neural nEtwork (TUNE): the measure of protein sequence-structure compatibility , 2002, Bioinform..

[44]  D. van der Spoel,et al.  Efficient docking of peptides to proteins without prior knowledge of the binding site , 2002, Protein science : a publication of the Protein Society.

[45]  Luhua Lai,et al.  Further development and validation of empirical scoring functions for structure-based binding affinity prediction , 2002, J. Comput. Aided Mol. Des..

[46]  P. Tsvetkov,et al.  Binding of ATP to Heat Shock Protein 90 , 2002, The Journal of Biological Chemistry.

[47]  G. Klebe,et al.  Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors , 2002 .

[48]  Andrzej Kolinski,et al.  Protein fragment reconstruction using various modeling techniques , 2003, J. Comput. Aided Mol. Des..

[49]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[50]  E. Koonin 22. The Clusters of Orthologous Groups (COGs) Database: Phylogenetic Classification of Proteins from Complete Genomes , 2003 .

[51]  P. Csermely,et al.  Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. , 2003, European journal of biochemistry.

[52]  Alexander Tropsha,et al.  Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations , 2003, Bioinform..

[53]  L. Neckers Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. , 2003, Current medicinal chemistry.

[54]  Ceslovas Venclovas,et al.  Assessment of progress over the CASP experiments , 2003, Proteins.

[55]  L. Fritz,et al.  A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors , 2003, Nature.

[56]  G. Vriend,et al.  Homology modeling. , 2020, Methods of biochemical analysis.

[57]  M. Goetz,et al.  The Hsp90 chaperone complex as a novel target for cancer therapy. , 2003, Annals of oncology : official journal of the European Society for Medical Oncology.

[58]  Jeffrey J. Gray,et al.  Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. , 2003, Journal of molecular biology.

[59]  C. Lipinski Lead- and drug-like compounds: the rule-of-five revolution. , 2004, Drug discovery today. Technologies.

[60]  Sandor Vajda,et al.  ClusPro: an automated docking and discrimination method for the prediction of protein complexes , 2004, Bioinform..

[61]  Sandor Vajda,et al.  ClusPro: a fully automated algorithm for protein-protein docking , 2004, Nucleic Acids Res..

[62]  Martin Stahl,et al.  Scoring functions for protein-ligand interactions: a critical perspective. , 2004, Drug discovery today. Technologies.

[63]  P. Csermely,et al.  Inhibition of Hsp90: a new strategy for inhibiting protein kinases. , 2004, Biochimica et biophysica acta.

[64]  L. Pearl,et al.  Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery , 2004, The EMBO journal.

[65]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[66]  D. Agard,et al.  The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. , 2004, Structure.

[67]  C. Brooks,et al.  Recent advances in the development and application of implicit solvent models in biomolecule simulations. , 2004, Current opinion in structural biology.

[68]  G. Folkers,et al.  Thermodynamics of Protein–Ligand Interactions: History, Presence, and Future Aspects , 2004, Journal of receptor and signal transduction research.

[69]  M. Mason,et al.  Induction of heat shock proteins in B-cell exosomes , 2005, Journal of Cell Science.

[70]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[71]  G. Colombo,et al.  Rational design of shepherdin, a novel anticancer agent. , 2005, Cancer cell.

[72]  S. Eddy,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[73]  M. Minami,et al.  Constantly updated knowledge of Hsp90. , 2005, Journal of biochemistry.

[74]  X. Barril,et al.  Structure-based discovery of a new class of Hsp90 inhibitors. , 2005, Bioorganic & medicinal chemistry letters.

[75]  S. Lindquist,et al.  HSP90 and the chaperoning of cancer , 2005, Nature Reviews Cancer.

[76]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[77]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[78]  L. Pearl,et al.  Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex , 2006, Nature.

[79]  Arne Elofsson,et al.  Identification of correct regions in protein models using structural, alignment, and consensus information , 2006, Protein science : a publication of the Protein Society.

[80]  T. Golub,et al.  Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. , 2006, Cancer cell.

[81]  A. Ben Wagner,et al.  SciFinder Scholar 2006: An Empirical Analysis of Research Topic Query Processing , 2006, J. Chem. Inf. Model..

[82]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[83]  C. Garrido,et al.  Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy , 2007, Journal of leukocyte biology.

[84]  Mark A. Brown,et al.  Hsp90--from signal transduction to cell transformation. , 2007, Biochemical and biophysical research communications.

[85]  P. Csermely,et al.  Characterization of the 90 kDa heat shock protein (HSP90)-associated ATP/GTPase , 1996, Journal of Biosciences.

[86]  L. Neckers,et al.  Extracellular heat shock protein 90: A role for a molecular chaperone in cell motility and cancer metastasis , 2007, Cancer science.

[87]  Jean M. Severin,et al.  Discovery and Design of Novel HSP90 Inhibitors Using Multiple Fragment‐based Design Strategies , 2007, Chemical biology & drug design.

[88]  R. Immormino,et al.  Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. , 2007, Molecular cell.

[89]  J. Hahn,et al.  A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. , 2007, Bioorganic & medicinal chemistry letters.

[90]  Wei Li,et al.  Extracellular heat shock protein‐90α: linking hypoxia to skin cell motility and wound healing , 2007, The EMBO journal.

[91]  G. Landberg,et al.  Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer , 2007, Cellular and Molecular Life Sciences.

[92]  G. Semenza Evaluation of HIF-1 inhibitors as anticancer agents. , 2007, Drug discovery today.

[93]  Tao Zhang,et al.  A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells , 2008, Molecular Cancer Therapeutics.

[94]  E. Freire Do enthalpy and entropy distinguish first in class from best in class? , 2008, Drug discovery today.

[95]  L. Pearl,et al.  The Hsp90 molecular chaperone: an open and shut case for treatment. , 2008, The Biochemical journal.

[96]  N. Grishin,et al.  PROMALS3D: a tool for multiple protein sequence and structure alignments , 2008, Nucleic acids research.

[97]  A. Sali,et al.  How well can the accuracy of comparative protein structure models be predicted? , 2008, Protein science : a publication of the Protein Society.

[98]  Janusz M. Bujnicki,et al.  MetaMQAP: A meta-server for the quality assessment of protein models , 2008, BMC Bioinformatics.

[99]  Sanjay Kumar,et al.  Mechanics, malignancy, and metastasis: The force journey of a tumor cell , 2009, Cancer and Metastasis Reviews.

[100]  M. Simon,et al.  The role of oxygen availability in embryonic development and stem cell function , 2008, Nature Reviews Molecular Cell Biology.

[101]  Ali Rana Atilgan,et al.  Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein , 2009, PLoS Comput. Biol..

[102]  A. Elofsson,et al.  Structure is three to ten times more conserved than sequence—A study of structural response in protein cores , 2009, Proteins.

[103]  K. Dill,et al.  Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". , 2009, Structure.

[104]  D. Stellas,et al.  Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits , 2010, BMC Cell Biology.

[105]  Gennady M Verkhivker,et al.  Structural and computational biology of the molecular chaperone Hsp90: from understanding molecular mechanisms to computer-based inhibitor design. , 2009, Current topics in medicinal chemistry.

[106]  P. Jänne,et al.  Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small Cell Lung Cancer , 2009, Clinical Cancer Research.

[107]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[108]  Muhammad K. Haider,et al.  Hydrogen Bonds in Proteins: Role and Strength , 2010 .

[109]  Giulio Rastelli,et al.  Exploring the Binding Site of C-Terminal Hsp90 Inhibitors , 2010, J. Chem. Inf. Model..

[110]  G. Giaccone,et al.  Targeting the dynamic HSP90 complex in cancer , 2010, Nature Reviews Cancer.

[111]  Bert L. de Groot,et al.  Ligand docking and binding site analysis with PyMOL and Autodock/Vina , 2010, J. Comput. Aided Mol. Des..

[112]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[113]  D. E. Clark,et al.  Outstanding challenges in protein–ligand docking and structure‐based virtual screening , 2011 .

[114]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[115]  C. Arteaga,et al.  Resistance to HER2-directed antibodies and tyrosine kinase inhibitors , 2011, Cancer biology & therapy.

[116]  S. Vaidya,et al.  Recent developments in drug resistance mechanism in chronic myeloid leukemia: a review , 2011, European journal of haematology.

[117]  Igor V. Filippov,et al.  Optical Structure Recognition Application Entry in Image2Structure Task , 2011, TREC.

[118]  Yang Zhang,et al.  Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.

[119]  N. Lin,et al.  HSP90 as a platform for the assembly of more effective cancer chemotherapy. , 2012, Biochimica et biophysica acta.

[120]  C. Prodromou The ‘active life’ of Hsp90 complexes☆ , 2012, Biochimica et biophysica acta.

[121]  Tony Taldone,et al.  Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. , 2012, Biochimica et biophysica acta.

[122]  Z. Popovic,et al.  Increased Diels-Alderase activity through backbone remodeling guided by Foldit players , 2012, Nature Biotechnology.

[123]  Wei Li,et al.  Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. , 2012, Biochimica et biophysica acta.

[124]  Yechun Xu,et al.  Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. , 2012, Acta biochimica et biophysica Sinica.

[125]  C. Garrido,et al.  Targeting heat shock proteins in cancer. , 2013, Cancer letters.

[126]  Wei Li,et al.  Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. , 2013, International review of cell and molecular biology.

[127]  Dima Kozakov,et al.  How good is automated protein docking? , 2013, Proteins.

[128]  S. Paul,et al.  Design of novel Geldanamycin analogue hsp90 alpha-inhibitor in silico for breast cancer therapy. , 2013, Medical hypotheses.

[129]  S. Jackson Hsp90: structure and function. , 2012, Topics in current chemistry.

[130]  Markus A. Lill,et al.  A Medicinal Chemist's Guide to Molecular Interactions , 2013 .

[131]  Shashank Shekhar,et al.  Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins , 2014, BMC Bioinformatics.

[132]  J. Langton,et al.  Retrospective studies of end-of-life resource utilization and costs in cancer care using health administrative data: A systematic review , 2014, Palliative medicine.

[133]  G. Chiosis,et al.  Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions , 2014, Expert opinion on investigational drugs.

[134]  G. Rastelli Dimerization hot spots in the structure of human Hsp90 , 2014 .

[135]  Özlem Tastan Bishop,et al.  Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90. , 2013, Biochemical and biophysical research communications.