Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations

[1]  On the Number of Solutions to Semilinear Boundary Value Problems , 2004 .

[2]  Meirong Zhang,et al.  Optimal bounds for bifurcation values of a superlinear periodic problem , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Dingbian Qian,et al.  Periodic solutions for ordinary difierential equations with sub-linear impulsive efiects , 2005 .

[5]  James R. Ward,et al.  Asymptotic conditions for periodic solutions of ordinary differential equations , 1981 .

[6]  Meirong Zhang Nonresonance Conditions for Asymptotically Positively Homogeneous Differential Systems: The Fučik Spectrum and Its Generalization , 1998 .

[7]  L. Saloff-Coste Aspects of Sobolev-Type Inequalities: Sobolev inequalities in ℝ n , 2001 .

[8]  M. Zhang A Lyapunov-type stability criterion using L^a^l^p^h^a norms , 2002 .

[9]  Meirong Zhang,et al.  Non-Degeneracy and Periodic Solutions of Semilinear Differential Equations with Deviation , 2006 .

[10]  The Floquet Theory of the Periodic Euler-Bernoulli Equation , 1998 .

[11]  W. Magnus,et al.  Hill's equation , 1966 .

[12]  V. Papanicolaou The periodic Euler-Bernoulli equation , 2003 .

[13]  P. J. Torres,et al.  On the structure of the set of bounded solutions on a periodic Liénard equation , 1999 .

[14]  Louis A. Pipes,et al.  Applied Mathematics for Engineers and Physicists , 1959 .

[15]  D. Hinton,et al.  Some disconjugacy criteria for differential equations with oscillatory coefficients , 2005 .