Efficient sample generation for scalable meta learning
暂无分享,去创建一个
Berthold Reinwald | Alexandre V. Evfimievski | Volker Markl | Juan Soto | Sebastian Schelter | Douglas Burdick | V. Markl | Sebastian Schelter | B. Reinwald | D. Burdick | A. Evfimievski | Juan Soto
[1] Seymour Geisser,et al. The Predictive Sample Reuse Method with Applications , 1975 .
[2] Volker Markl,et al. Myriad: Scalable and Expressive Data Generation , 2012, Proc. VLDB Endow..
[3] David E. Booth,et al. Analysis of Incomplete Multivariate Data , 2000, Technometrics.
[4] Shirish Tatikonda,et al. Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML , 2014, Proc. VLDB Endow..
[5] C. S. Davis. The computer generation of multinomial random variates , 1993 .
[6] Yuan Yuan,et al. Major technical advancements in apache hive , 2014, SIGMOD Conference.
[7] Purnamrita Sarkar,et al. A scalable bootstrap for massive data , 2011, 1112.5016.
[8] Tim Kraska,et al. MLI: An API for Distributed Machine Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.
[9] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[10] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[11] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .
[12] Roberto J. Bayardo,et al. PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce , 2009, Proc. VLDB Endow..
[13] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[14] Shivnath Babu,et al. Cumulon: optimizing statistical data analysis in the cloud , 2013, SIGMOD '13.
[15] Yehuda Koren,et al. Matrix Factorization Techniques for Recommender Systems , 2009, Computer.
[16] Shirish Tatikonda,et al. SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[17] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[18] Michael J. Carey,et al. Extending Map-Reduce for Efficient Predicate-Based Sampling , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[19] Jimmy J. Lin,et al. Large-scale machine learning at twitter , 2012, SIGMOD Conference.
[20] Joseph M. Hellerstein,et al. MAD Skills: New Analysis Practices for Big Data , 2009, Proc. VLDB Endow..
[21] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[22] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[23] R. Tibshirani,et al. Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .
[24] Rares Vernica,et al. Hyracks: A flexible and extensible foundation for data-intensive computing , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[25] Tim Kraska,et al. MLbase: A Distributed Machine-learning System , 2013, CIDR.
[26] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[27] Christos Faloutsos,et al. PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations , 2009, 2009 Ninth IEEE International Conference on Data Mining.