VizAssist: an interactive user assistant for visual data mining

We study in this work how a user can be guided to find a relevant visualization in the context of visual data mining. We present a state of the art on the user assistance in visual and interactive methods. We propose a user assistant called VizAssist, which aims at improving the existing approaches along three directions: it uses simpler computational models of the visualizations and the visual perception guidelines, in order to facilitate the integration of new visualizations and the definition of a mapping heuristic. VizAssist allows the user to provide feedback in a visual and interactive way, with the aim of improving the data to visualization mapping. This step is performed with an interactive genetic algorithm. Finally, VizAssist aims at proposing a free on-line tool (www.vizassist.fr) that respects the privacy of the user data. This assistant can be viewed as a global interface between the user and some of the many visualizations that are implemented with D3js.

[1]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[2]  Jim Davies,et al.  Taxonomy-Based Glyph Design—with a Case Study on Visualizing Workflows of Biological Experiments , 2012, IEEE Transactions on Visualization and Computer Graphics.

[3]  R. Dawkins The Blind Watchmaker , 1986 .

[4]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[5]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[6]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[7]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[8]  Steffen Lange,et al.  Problem-oriented visualization of multi-dimensional data sets , 1995 .

[9]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[10]  M. Sheelagh T. Carpendale,et al.  Creation and Collaboration: Engaging New Audiences for Information Visualization , 2008, Information Visualization.

[11]  A. Stuart,et al.  Non-Parametric Statistics for the Behavioral Sciences. , 1957 .

[12]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[13]  Sung-Bae Cho,et al.  Application of interactive genetic algorithm to fashion design , 2000 .

[14]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[15]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[16]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[17]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[18]  Fabien Picarougne,et al.  VRMiner: A Tool for Multimedia Database Mining with Virtual Reality , 2006 .

[19]  Robert St. Amant,et al.  ViA: a perceptual visualization assistant , 2000, Applied Imaging Pattern Recognition.

[20]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[21]  Evelyne Lutton,et al.  EvoGraphDice: Interactive evolution for visual analytics , 2012, 2012 IEEE Congress on Evolutionary Computation.

[22]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Jeffrey Heer,et al.  Visual Embedding: A Model for Visualization , 2014, IEEE Computer Graphics and Applications.

[24]  Eve Ignatius,et al.  A knowledge based system for scientific data visualization , 1992 .

[25]  Jarke J. van Wijk,et al.  Model-based Visualization - Computing Perceptually Optimal Visualizations , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[26]  Jérôme Darmont,et al.  Processing And Managing Complex Data for Decision Support , 2006 .

[27]  Hikmet Senay,et al.  A knowledge-based system for visualization design , 1994, IEEE Computer Graphics and Applications.

[28]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[29]  Christopher G. Healey,et al.  Visual Perception and Mixed-Initiative Interaction for Assisted Visualization Design , 2008, IEEE Transactions on Visualization and Computer Graphics.

[30]  Sakunthala Gnanamgari Information presentation through default displays , 1981 .

[31]  Jade Goldstein-Stewart,et al.  Interactive graphic design using automatic presentation knowledge , 1994, CHI Conference Companion.

[32]  Stefan Pietschmann,et al.  Context-aware Recommendation of Visualization Components , 2012 .

[33]  Heidrun Schumann,et al.  A Design Space of Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Daniel Perry,et al.  VizDeck: self-organizing dashboards for visual analytics , 2012, SIGMOD Conference.

[35]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[36]  John T. Stasko,et al.  Toward a Deeper Understanding of the Role of Interaction in Information Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[37]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[38]  Geert Molenberghs,et al.  Linear Mixed Models in Practice , 1997 .

[39]  Colin Ware,et al.  Data Visualization Optimization via Computational Modeling of Perception , 2012, IEEE Transactions on Visualization and Computer Graphics.

[40]  Nao and Iba Hitoshi Tokui,et al.  Music Composition with Interactive Evolutionary Computation , 2000 .

[41]  Mohamed Slimane,et al.  On Using Interactive Genetic Algorithms for Knowledge Discovery in Databases , 1997, ICGA.

[42]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[43]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[44]  Geert Molenberghs,et al.  Linear Mixed Models in Practice: A SAS-Oriented Approach , 1997 .

[45]  Marcus A. Magnor,et al.  Perception-based visual quality measures , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[46]  Daniel A. Keim,et al.  Pixnostics: Towards Measuring the Value of Visualization , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[47]  Joshua R. Smith Designing Biomorphs with an Interactive Genetic Algorithm , 1991, ICGA.

[48]  Susanne Lange Problem-oriented visualisation of multi-dimensional data sets , 2007 .

[49]  Lydia Boudjeloud,et al.  Visual Interactive Evolutionary Algorithm for High Dimensional Data Clustering and Outlier Detection , 2005, PAKDD.

[50]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[51]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[52]  Gilles Venturini,et al.  A User Assistant for the Selection and Parameterization of the Visualizations in Visual Data Mining , 2012, 2012 16th International Conference on Information Visualisation.

[53]  Melanie Tory,et al.  How Information Visualization Novices Construct Visualizations , 2010, IEEE Trans. Vis. Comput. Graph..

[54]  Leland Wilkinson,et al.  ScagExplorer: Exploring Scatterplots by Their Scagnostics , 2014, 2014 IEEE Pacific Visualization Symposium.

[55]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.